THE PENNSYLVANIA STATE UNIVERSITY

MILLENNIUM SCHOLARS PROGRAM

DEPARTMENT OF MECHANICAL & NUCLEAR ENGINEERING

DESIGN OF A LAB-SCALE FORWARD OSMOSIS DESALINATION CELL FOR CONCENTRATION POLARIZATION MITIGATION TESTING

LUKE FABRICE GOCKOWSKI

FALL 2017

A thesis

submitted in partial fulfillment of the requirements for a baccalaureate degree

in Mechanical Engineering.

Reviewed and approved* by the following:

Dr. Tak Sing Wong

Assistant Professor of Mechanical Engineering

Thesis Supervisor

Dr. Pak King Wong

Professor of Biomedical Engineering

Second Reader

* Signatures are on file in the Millennium Scholarship Program office.

ABSTRACT

Over forty percent of the global population lives in regions incapable of meeting human and ecological water demand; an issue only to be exacerbated by a projected annual global population increase of over 80 million. In the face of this crisis global water desalination capacities have leapt from an estimated 326 cubic meters of water produced per day in 1945 [5] to an estimated 86.8 million cubic meters produced per day in 2015 [6]. Though a wide range of mature desalination technologies are currently commercially available, membrane desalination technologies are rapidly becoming popular for their superior energetics (i.e. lower specific energy consumption (kWh/m³) [10] and in turn, lower monetary costs. Forward osmosis (FO) is one membrane desalination technology that has received little commercial attention due to challenges such as scaling, specific energy cost, and concentration polarization. Addressing the latter, prior studies focus primarily on the significance of membrane and draw solute parameters [12, 13, 14]: (1) membrane orientation, (2) magnitude of the diffusion coefficient of the draw solute, (3) structural properties of the membrane support layer, and (4) the solute resistivity and their effects on ICP. However, no existing published body of work investigates the effect of mixing in a FO cell channel on concentration polarization. Herein, the design of three lab-scale FO cells intended for such investigation are covered in-depth, as well as discussion of the effect of mixing in a FO cell channel on concentration polarization.

TABLE OF CONTENTS

ABSTRACTi
LIST OF FIGURESiv
LIST OF TABLES
ACKNOWLEDGEMENTS vii
1.0 BACKGROUND & MOTIVATION
1.1 THE GLOBAL IMMINENCE OF WATER STRESS
1.2 SEAWATER DESALINATION ACROSS TIME
1.3 PROMINENT DESALINATION TECHNOLOGIES
1.3.1 MEMBRANE DESALINATION TECHNOLOGIES
1.3 MOTIVATION & OBJECTIVES12
1.3.1 MOTIVATION & OBJECTIVES
1.3.2 EXISTING LAB-SCALE COMMERCIAL FORWARD OSMOSIS SYSTEMS 13
2. DESIGN, CONSTRUCTION, AND EXPERIMENATION
2.1 PROTOTYPE 1: MEMBOXX 1.0
2.1.1 DESIGN
2.1.2 FABRICATION
2.1.3 TESTING
2.3 PROTOTYPE 2: MEMBOXX 2.0
2.3.1 DESIGN
2.3.2 FABRICATION
2.3.3 TESTING

2.4 PROTOTYPE 3: MEMBOXX 3.0
2.4.1 DESIGN
2.4.2 FABRICATION
2.4.3 TESTING
3. FUTURE WORK
APPENDIX A MasterCam X6 Code for Memboxx 2.0 (3-Column Format)25
BIBLIOGRAPHY
ACADEMIC VITA
EDUCATION42
RESEARCH & WORK EXPERIENCE42
ORAL & POSTER PRESENTATIONS43
LEADERSHIP EXPERIENCE
SELECTED PROJECTS
OUTREACH & COMMUNITY SERVICE43
SKILLS
SCHOLARSHIPS & AWARDS

LIST OF FIGURES

Figure 1. Awarded membrane and thermal desalination capacity, 1990-2014. Adapted from [9]. 9
Figure 2. Osmosis in a beaker over time10
Figure 3. Forward osmosis desalination process
Figure 4. a) Internal concentration polarization (ICP). b) External concentration polarization (ECP)
Figure 5. Submerged versus zigzag filament orientation, adapted from [18]13
Figure 6. Memboxx 1.0 water flux testing setup
Figure 7. a) Exploded view of Solidworks assembly. b) Final assembly of Memboxx 1.0 with FO membrane in place
Figure 8. Sterlitech's Sepa Test Cell (source: Sterlitech)16
Figure 9. Lab-scale forward osmosis system diagram16
Figure 10. a) Solidworks exploded view of Memboxx 2.0. b) Solidworks collapsed side view of Memboxx 2.0
Figure 11. Major dimensions of Memboxx 2.017
Figure 12. Memboxx 2.0 model system setup
Figure 13. a) Memboxx 2.0 blue-dye test. b) Close-up of blue dye test
Figure 14. a) Proof-of-concept Solidworks design. b-d) Thermal warping of proof-of-concept 3D print
Figure 15. Memboxx 3.0 a) isometric view, b) side view, and c) front view
Figure 16. a) Solidworks tilted view of angled grooves. b) Memboxx 3.0 printed grooves22
Figure 17. Major dimensions of Memboxx 3.023
Figure 18. Mismatched groove size on Memboxx 3.023
Figure 19. Identified porous surfaces on Memboxx 3.0

Figure 20. a) Smooth channel. b) Channel with geometries. c) Channel geometry parameters. 24

LIST OF TABLES

Table 1. Global growth rates of selected water sectors (redrawn from [1])	.8
Table 2. Prominent desalination technologies.	.9
Table 3. Sterlitech FO Flat Sheet Membrane specifications.	.13
Table 4. Water flux results for 1M NaCl versus DI Water.	.15
Table 5. Memboxx 2.0 cell design needs.	.16
Table 6 . Bill of materials for Memboxx 2.0 system assembly	.18
Table 7. Memboxx 2.0 run results, 1M NaCl versus DI Water.	.20

ACKNOWLEDGEMENTS

"If I have seen further, it is by standing on the shoulders of giants." - Isaac Newton

Beginning with my family in academia, I would first like to thank Dr. Tak Sing Wong—an invaluable teacher, mentor, and role model. Without your financial support and willingness to let me explore my independent curiosities, this thesis would have never gotten off the ground. Second, I would like to my peers thank Nathan Arnett and Sachira Denagamage without whose tantamount foolish ambition, we would have never set down this tumultuous and winding path. Third, I would like to thank Mrs. Starlette Sharp who continues to be a guiding light in my life. Your mentorship will forever be appreciated. Thank you all.

To my family outside of academia—my wonderful parents, siblings, friends, and girlfriend thank you all for supporting me in my lows and highs, inquiring about my thesis when appropriate, and diving into non-academic conversation when necessary. You are all appreciated. Also, none of you will likely ever read this, but just know that you are indeed appreciated.

1.0 BACKGROUND & MOTIVATION

1.1 THE GLOBAL IMMINENCE OF WATER STRESS

Presently, just over two out of five people across all seven continents of our planet live in regions incapable of meeting human and ecological water demand—an issue only to be exacerbated by a projected annual global population increase of over 80 million. A nation's ability, or lack thereof, to meet the demand for clean water can undermine its health, economic growth, food and energy security, ecological processes and biodiversity, as well as conflict reduction. In a global effort to alleviate stress on existing water sources, Table 1 illustrates strides made in the areas of infrastructure repair, water treatment, and other water conservation methods.

Region	Pumps, Pipes, Valves	Water Treatment Equipment	Water Testing Equipment	Irrigation	Water, Wastewater Project Market
Global	2.4%	2.4%	5-7%	6-12%	6.2%
China	10-15%	13.5%	11%	14-16%	24%
India	>15%	15-20%	15-20%	16%	12-15%

Table 1. Global growth rates of selected water sectors (redrawn from [1])

Though these efforts are indeed critical to conserving existing water resources, each of these efforts are staunchly limited to the supply of the hydrological cycle. Within the hydrological cycle, fresh water constitutes a meager 2.5% of the total water on Earth. Further, only .007% of that number is directly usable, with the remainder either frozen in polar regions or lying in remote, inaccessible, underground aquifers [2].

Present knowledge suggests that the only methods capable of increasing water supply beyond this cycle are: water reuse and seawater desalination [3]. The abundance of seawater (97.5% of Earth's water supply) on Earth has recently pushed the latter to the forefront of global interest. Analysis from private companies estimate an eighty percent increase in the total global investment for water public-private partnership (PPP) schemes targeting new seawater desalination and wastewater treatment plants between 2016 and 2020 [4].

1.2 SEAWATER DESALINATION ACROSS TIME

Separating seawater into salt and water is a process that has existed on a small-scale for millennia. In 384-322 BCE, Aristotle documented that "salt water when it turns into vapour becomes sweet and the vapour does not form salt water again when it condenses." In 200 BC, Alexander of Aphrodisias recounts a technique by which sailors boiled seawater and used sponges to collect the vapor [5].

The end of World War II, however, marks the beginning of a steady annual increase in the number of desalination projects worldwide—leaping from an estimated 326 cubic meters of water produced per day in 1945 [5] to an estimated 86.8 million cubic meters produced per day in 2015 [6].

1.3 PROMINENT DESALINATION TECHNOLOGIES

Together, thermal and membrane desalination technologies (Table 2) constituted 96% of the desalination market in 2016 [7]. Thermal desalination involves heating saline water into water vapor which is then collected for use, leaving behind a highly saline solution. Whereas membrane desalination technologies employ semi-permeable materials to separate water molecules from unwanted minerals. In 2016, the global desalination capacity measured approximately 100 million m³ per day, of which 65% was from membrane processes and 31% from thermal-based processes [7].

Table 2. Prominent desalination technologies.

Thermal Technologies	Membrane desalination technologies
Multi Stage Flash (MSF)	Reverse Osmosis (RO)
Multi-Effect Distillation (MED)	Electrodialysis (ED)
Vapor Compression (VC)	Forward Osmosis (FO)

Existing publications **Invalid source specified.** offer a detailed and comprehensive overview of how various thermal-based desalination technologies work. However, such an overview lies outside of the scope of this discussion and will thus be omitted. In its place, this paper focuses on membrane desalination technologies both because of their increasing global capacity (Figure 1), and their relevance to later discussion.

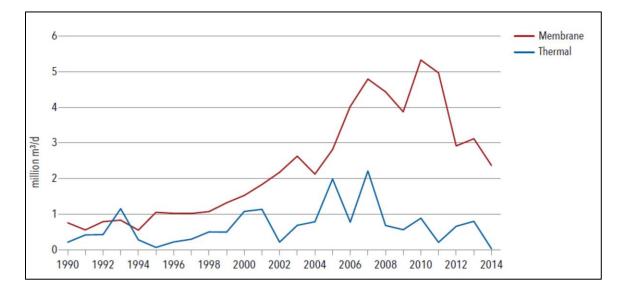


Figure 1. Awarded membrane and thermal desalination capacity, 1990-2014. Adapted from [9].

1.3.1 MEMBRANE DESALINATION TECHNOLOGIES

Though a wide range of mature desalination technologies are currently commercially available, interest has recently been directed towards membrane desalination technologies in favor of their superior energetics (i.e. lower specific energy consumption (kWh/m³) [10] and in turn, lower monetary costs. All membrane desalination technologies depend on the net movement of water through a selectively permeable membrane. Save for electrodialysis, which employs an electric potential, all membrane desalination technologies occur either via the natural net movement of water (i.e. osmosis or forward osmosis) or oppose it via an applied pressure (i.e. reverse osmosis).

1.3.1.1 OSMOSIS

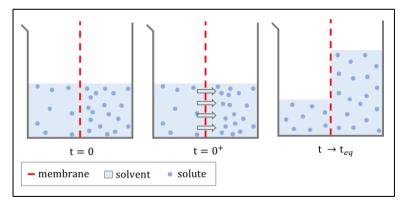


Figure 2. Osmosis in a beaker over time.

Osmosis is the tendency of molecules of a solvent to traverse a semipermeable membrane from a solution of lower molar concentration (lower osmotic pressure) to one of higher molar concentration (higher osmotic pressure), until the pressure on either side of the membrane equalizes (Figure 2). Osmotic pressure is the pressure which, if applied as a hydraulic pressure, would bar the movement of solvent across a membrane.

Though osmosis is central to membrane-based desalination technologies, it can be exploited in a variety of forms. Forward osmosis (FO) desalination follows the course of nature—requiring no applied pressure to coax water across a membrane for desalination. By contrast, reverse osmosis (RO) desalination applies hydraulic pressure in the opposite direction of osmosis to achieve the same end: desalinated water. Though RO currently holds the greatest desalination capacity worldwide, the advantages of FO—should it be realized on the commercial scale—greatly exceed that of energy-intensive desalination technologies such as RO.

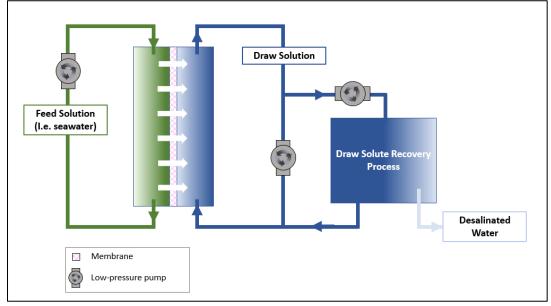


Figure 3. Forward osmosis desalination process.

The osmotic pressure generated during osmosis depends solely on the molar concentration of the solute but not on its identity. Exploiting this phenomenon, forward osmosis (FO) desalination employs a draw solution of a higher molar concentration than the feed—i.e. seawater—to draw water molecules across a semi-permeable membrane (Figure 3).

Debate remains as to whether or not FO is a feasible process for large-scale desalination [11, 12]. In the face of the emerging global water and energy crises, however, FO potentially offers [12, 13]: (1) water of comparable quality to conventional desalination technologies (e.g. reverse osmosis), (2) zero hydraulic pressure necessary for desalination, (3) low electrical energy requirement if combined with a suitable draw solution post-treatment step, and (4) high volume water recovery, (5) potentially lower membrane fouling than pressure-driven processes, and (6) minimal disturbance to sensitive species (e.g. membrane bioreactors) and or sensitive components in the feed solution.

Despite these positive attributes, FO also faces challenges—albeit common to most membrane technology—such as membrane fouling, reverse solute diffusion, and concentration polarization (Figure 4), which all contribute to lower-than-expected flux across the membrane. Membrane fouling arises when deposits of solute or other particles accumulate on the membrane surface. Reverse solute diffusion refers to the tendency of particles (i.e. draw solute, in the case of FO) to traverse a semipermeable membrane toward higher concentration gradients—contrary to conventional diffusion. Finally, concentration polarization is an inescapable phenomenon in both pressure- and osmotically-driven processes, and will serve as the primary focus of this work.

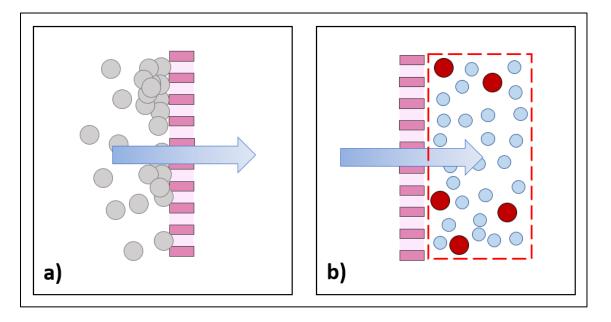


Figure 4. a) Internal concentration polarization (ICP). b) External concentration polarization (ECP).

Concentration polarization processes can be divided into two phenomena: external concentration polarization (IECP) which occurs at the active face of an asymmetric membrane, and internal concentration polarization (ICP) which occurs at within the porous support layer of a membrane (Figure 4), both of which are common hurdles in FO applications. ICP has been shown to incite a flux decline of over 80%, as it radically decreases the osmotic pressure at the membrane interface [14]. ECP reduces flux across a membrane due to dilution on the draw solution—which results in a decreased osmotic pressure— on the active side of the membrane. For FO technology to advance beyond the lab bench and into commercial desalination practices for potable water, the aforementioned challenges must be addressed head-on.

1.3 MOTIVATION & OBJECTIVES 1.3.1 MOTIVATION & OBJECTIVES

As discussed in Section 1.3.1.3, realizing FO for commercial desalination presents an abundance of challenges (or perhaps opportunities) that must be addressed before the technology is brought to commercialization. Of these barriers to entry, this study focuses on minimizing the effects of concentration polarization in a lab-scale desalination unit. Prior studies focus primarily on the significance of membrane and draw solute parameters [12, 13, 14]: (1) membrane orientation, (2) magnitude of the diffusion coefficient of the draw solute, (3) structural properties of the membrane support layer, and (4) the solute resistivity and their effects on ICP. However, no existing published body of work investigates the effects of mixing on concentration polarization in a forward osmosis desalination applications.

Several studies [15, 16, 17, 18], however, have simulated flow around spacer filaments between channel walls in spiral-wound membrane reverse osmosis configurations because of their apparent ability to promote eddy mixing and enhance wall shear stress at the membrane interface. Wardeh and Morvan demonstrate [18] that having spacer filaments in the feed channel of a desalination cell reduces the concentration polarization on the surfaces of a spiral-wound membrane. Furthermore, the same study

found that spacer filaments woven in a zig-zag pattern, as compared to the submerged type (Figure 5), promote eddy mixing, induce lower pressure loss, experience lower salt concentrations at the membrane surface, and he highest cross flow for most Reynolds numbers. Inspired by the influence of physical bodies on mixing and thus concentration polarization, this study seeks similar results via the design of geometries for mixing in a forward osmosis desalination cell.

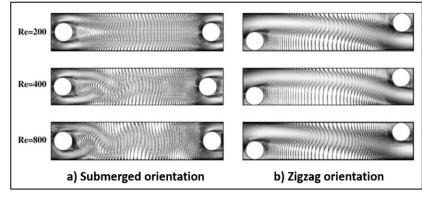


Figure 5. Submerged versus zigzag filament orientation, adapted from [18].

1.3.2 EXISTING LAB-SCALE COMMERCIAL FORWARD OSMOSIS SYSTEMS

Presently, Sterlitech is the sole commercial mass-producer of lab-scale forward osmosis cells. Sterlitech produces a wide variety of cells, ranging in price from \$2500.00 to \$7200.00. Though indeed these cells are robust in performance and design, their retail price greatly exceeds the modest research budget of a college student. Furthermore, the non-modifiable design of Sterlitech's cells are not suitable to accommodate experimentation with fluid dynamics in the cell's channels. Thus, in the face of necessity, this work documents the design of three lab-scale forward osmosis desalination cell prototypes, intended for concentration polarization mitigation testing.

2. DESIGN, CONSTRUCTION, AND EXPERIMENATION

2.1 PROTOTYPE 1: MEMBOXX 1.0 2.1.1 DESIGN

Every iteration of the Memboxx is composed of two primary elements: the membrane and the "box" (i.e. the fabricated cell) that encloses it. For the membrane, five Forward Osmosis (FO) Flat Sheet Membranes were purchased from the Sterlitech Corporation. The specifications of Sterlitech's FO Flat Sheet Membrane are outlined in Table 3 below, adapted from Sterlitech's product website.

Base Membrane	Polyethersulfone (PES)
Material	
Membrane thickness	110 micron (±15 micron)
Water flux	$>7 L/m^2/hr$ (H ₂ O vs 1 M NaCl; FO mode)
NaCl reverse flux	$<2 \text{ g/m}^2/\text{hr}$ (H ₂ O vs 1 M NaCl; FO mode)
Boron rejection	>70%
Arsenic rejection	>95%

Table 3. Sterlitech FO Flat Sheet Membrane specifications.

Operating conditions	Temperature range: 5-50 deg C		
	Short term exposure maximum: 65 deg C		
	pH range: 2-11 (short term exposure)		
Packaging	Stored wet and sealed in a watertight bag		
Storage*	Can be stored at room temperature, but preferably stored at 4 deg C *Do not allow membrane to dry as this will compromise its performance		
Shelf life	Minimum 6 months		

Memboxx 1.0 was designed simply to gather preliminary data about the effects of mixing on forward osmosis, thus both its design and construction are not complex. For each run, Memboxx 1.0 was to be set on two independent stirring plates with stir bars set to differing rotational velocities and allowed to run for the duration of three hours (Figure 5). Water flux was to be measured via observed changes in water level height.

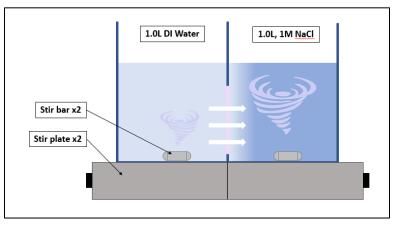


Figure 6. Memboxx 1.0 water flux testing setup.

2.1.2 FABRICATION

On either side of the membrane, both water-holding containers of Memboxx 1.0 have interior dimensions of 10x10x14.75 cm³, designed to comfortably house one liter of draw solution in one section and one liter of feed solution in the other (Figure 5). To fabricate Memboxx 1.0, acrylic sheets of varying dimensions were cut to size via an Epilog Legend 36EXT laser cutter, then welded together using TAP Acrylic Cement. An acrylic frame and a rubber gasket of identical profiles were cut to serve as the "doorway" in which the aquaporin membrane would rest—separating the draw from the feed solutions. Finally, holes 7mm in diameter were punched in the aquaporin membrane to allow for eight 7mm bolts to pass through the "doorway" and secure the door to the rest of the apparatus. An exploded view of the construction and an image of the final construction can be found below in Figures 6a and 6b, respectively.

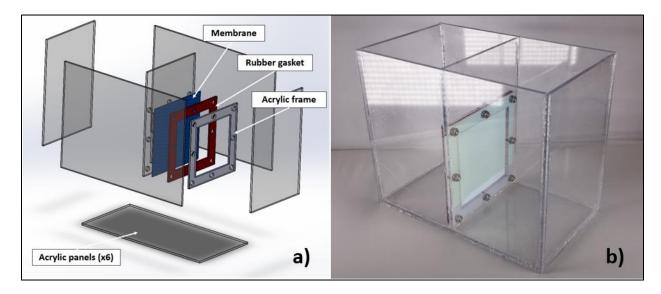


Figure 7. a) Exploded view of Solidworks assembly. b) Final assembly of Memboxx 1.0 with FO membrane in place.

2.1.3 TESTING

To verify the water flux properties of the FO membrane (i.e. $>7 \text{ L/m}^2/\text{hr}$ (H₂O vs 1 M NaCl; FO mode)) as well as the water-tightness of the cell design, a baseline test was performed. 1.0 Liter of DI water and 1.0 Liter of a 1M NaCl solution were poured simultaneously into opposing cavities. After one hour, however, the observed flux measured was found to be .00032% of the flux specified by the manufacturer (Table 4).

Run duration [hr]	1.00
Membrane SA [m2]	0.021025
Observed height change [m]	0.0047625
Calculated volume change [L]	4.7625E-07
Observed flux [L/hr]	4.76E-07
Expected flux [L/hr]	0.147175

Table 4. Water flux results for 1M NaCl versus DI Water	Table 4.	Water	flux	results	for	1M	NaCl	versus DI	Water.
---	----------	-------	------	---------	-----	-----------	------	-----------	--------

Later, this lower-than-expected flux was attributed to a poor seal provided by the rubber gasket sandwiched between the membrane and the acrylic frame. The poor seal allowed exchange between the NaCl solution and the DI water, thus creating volume changes not entirely attributable to osmosis. Seeking a more robust system to remediate this issue, the second iteration of the Memboxx began.

2.3 PROTOTYPE 2: MEMBOXX 2.0 2.3.1 DESIGN

The design of Memboxx 2.0 was largely inspired by Sterlitech's Sepa Test Cell (Figure 8). Emulating the design of the Sepa Test Cell results in a robust design, more compatible with Sterlitech's FO Membrane, at a fraction of the price of the Sepa Test Cell. Similar to the Sepa Test Cell, transparent cast acrylic was chosen as the bulk material for the cell—allowing the user to visualize flow patterns in the cell and monitor any fouling on the membrane surface. In addition, cast acrylic is unique in that it is relatively easy to machine for a plastic—a critical property for in-house construction of the Memboxx 2.0.

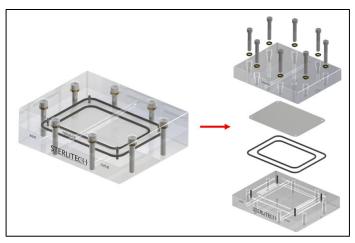


Figure 8. Sterlitech's Sepa Test Cell (source: Sterlitech).

The design of Memboxx 2.0 was largely shaped by a list of needs, outlined in Table 5 below in order of importance.

Table	5.	Memboxx	2.0	cell	design	needs.
-------	----	---------	-----	------	--------	--------

No.	Need	Reasoning
1	Robust, water-proof seal	Accurate measurement of volume changes
2	Transparent cell	Visualizing flow and membrane fouling
3	CNC-machinable design	Necessary for fabrication with cast acrylic
4	Variable flow through channel	Essential for testing at different Reynold's numbers
5	Easy disassembly and cleaning	Necessary for ease of membrane replacement
6	Channel is compatible with 3D	Testing the effects of 3D printed geometries on
	printed geometries	mixing and thus concentration polarization

With the initial design needs outlined, Memboxx 2.0 now had to be considered in the context of a lab-scale forward osmosis system. Adapting typical industrial forward osmosis system design (Figure 3) for lab-scale forward osmosis, Figure 9 illustrates the final system design for Memboxx 2.0. On either side of the membrane, a low-pressure pump pulls liquid from a beaker of solution (i.e. feed or draw) and pushes it through the cell channel, parallel to the membrane, before a portion of the liquid (not subject to flux) returns to the beaker and the cycle repeats itself. For further details on system setup and testing see Section 2.3.2.

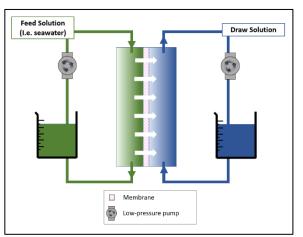


Figure 9. Lab-scale forward osmosis system diagram.

Meeting Design Need 1, O-Rings purchased from O-Rings West (Table 6) were selected for a water-tight seal between the layers of acrylic. Design Need 2 was satisfied via cast acrylic slabs (Table 6) purchased from USA Plastics, chosen for their transparency as well as machinability. Addressing the machinability of the design, however, took some iteration before it was met. The most apt and available tool for machining the body was a 3-Axis Bridgeport Computer Numerical Control (CNC) Machining Center (i.e. TorqCut V22). The TorqCut V22 uses a cutting tool that rotates rapidly around its Z-axis (i.e. the vertical axis) as it translates in the X, Y, and Z axes. One shortcoming of this process is that is incapable of removing material along axes other than the vertical axis, thus requiring some ingenuity to achieve complex internal geometries. Remedying this, Memboxx 2.0 consists of four slabs of acrylic, machined on the TorqCut V22 individually, that when bolted together form the desired flow channels (Figure 10).

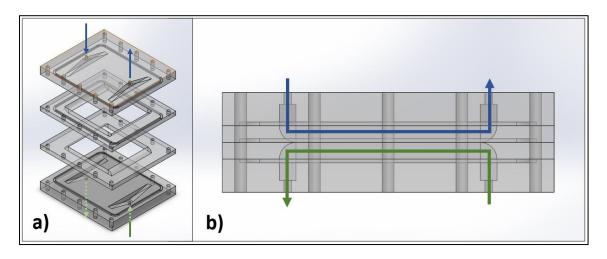


Figure 10. a) Solidworks exploded view of Memboxx 2.0. b) Solidworks collapsed side view of Memboxx 2.0.

Finally, to address Design Need 6, the channel height of Memboxx 2.0 (i.e. 9mm) was designed to provide ample room for any 3D geometries to be added to the channels (see Section 3.2). The dimensions of Memboxx 2.0 are illustrated right in Figure 11.

2.3.2 FABRICATION

With the design of Memboxx 2.0 finalized in Solidworks, the necessary code for machining on the TorqCut V22 was generated in Mastercam X6 software (see Appendix A). The code in Appendix A was edited by hand to ensure compatibility with the TorqCut's

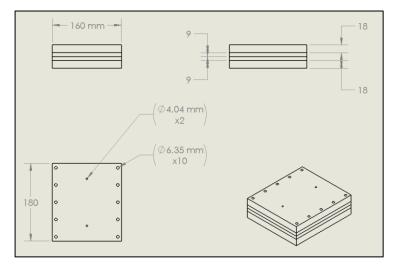


Figure 11. Major dimensions of Memboxx 2.0.

older operating system. Each of the four slabs of cast acrylic was then machined accordingly. To complete system assembly, the remaining components for Memboxx 2.0 (Table 6) were ordered from various suppliers.

Qty.	Material
2	Cast acrylic pieces (12x24x0.354 in ³)
2	Cast acrylic pieces (12x24x0.708 in ³)
4	Brass Male Connector, 10-32x3/32"
8	Stainless Steel ¹ / ₄ -28 Hex Nuts
8	Stainless Steel 1 ¹ / ₂ " x ¹ / ₄ -28 Bolts
8	Stainless Steel 1/4" ID Flat Washers
4'	3/32" ID, 5/32" OD Beverage Tubing
2	TCS M100s Micropumps
2	DC Voltage sources (~2.0-4.0V)
1	Aquaporin Membrane (11 cm by 13.5 cm)

Table 6 . Bill of materials for Memboxx 2.0 system assembly.

2.3.3 TESTING

Each experiment conducted using Memboxx 2.0 followed the procedure below:

- 1. Soak the Sterlitech FO Flat Sheet membrane in DI water for thirty minutes to prime the membrane.
- 2. Rinse each of the four acrylic pieces with DI water thoroughly. Wipe dry. Wipe down surfaces with isopropyl alcohol.
- 3. Stack the bottom two acrylic pieces, fitting the O-ring in its groove, then carefully lay the FO membrane in place on top of the second piece.
- 4. Stack the top two acrylic pieces, fitting the next two O-rings in their respective grooves.
- 5. Push all ten bolts through their respective holes and thread the hex nuts on by hand. Using an Allen wrench, tighten the bolts in a "star pattern" until the edges of the membrane are visibly compressed against the acrylic surfaces and the bolts feel snug.
- 6. If first time assembling—wrap threads of the brass male connectors with Teflon tape. Thread all four male connectors in their respective holes using standard pliers.
- 7. Cut sections of the beverage tubing in accordance with the diagram illustrated in Figure 9. See Figure 11 for further clarity. Push ends of tubing over the male adapters of the brass male fitting and the TCS M100s micropumps respectively.
- 8. Wire the TCS M100s micropumps to the desired voltage source.
- 9. Fill designated beakers with draw and feed solutions respectively. CAUTION: Be sure to keep liquids away from wires and voltage source.
- 10. Fix ends of beverage tubing inside of beakers as illustrated in Figure 9.
- 11. The final assembly should resemble that illustrated in Figure 11 below. To begin experiment, turn on DC voltage source to appropriate voltage and begin recording.

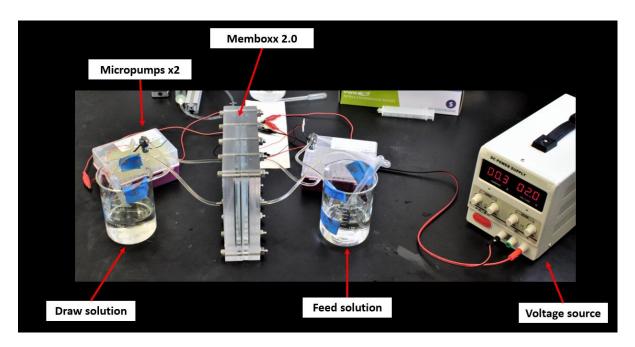


Figure 12. Memboxx 2.0 model system setup.

An initial experiment was run with DI water on either side of the FO membrane to ensure that the system was functioning properly and was watertight. Both pumps were provided 2.0V, resulting in a flow rate of 93mL per minute and a pressure of 125 mBar. During this procedure, it was noted that the membrane would stretch (visually similar to an inflating pillow) in one direction during the run, thus causing a change in volume in one of the beakers. However, once the pumps were shut off, this stretching was no longer present. The reason for this phenomena is still unknown, but was accounted for in following experiments by measure volume change only after the pumps had been shut off.

After this initial run the system was disassembled, two experiments were then run to ensure that Sterlitech's FO membrane was performing to specification. Both experiments tested approximately 300mL of DI Water against 300mL of 1M NaCl solution; both TCS M100s micropumps were provided 2.0V, resulting in equivalent flow rates of 93mL per minute; the solutions flowed in the same direction, parallel to the membrane; and were run for the same duration of time. The difference between the two experiments was the orientation of the membrane. Sterlitech recommends that the FO membrane be run with the active side facing the draw solution. Run 1 was run with the active side facing the feed solution. Run 2 was run with the active side facing the draw solution. The results of both of these runs are recorded in Table 7.

Memboxx 2.0 is designed such that 100mm² of membrane will be in contact with both solutions resulting in an expected flux rate (according to Sterlitech's specifications) of 0.07 L/hr. Experiment 1, with the active side of the membrane facing the feed solution, resulted in the higest observed flux rate just 3.37% of the expected flux rate. Using a salinity refractometer, it was also determined that the salinity on the feed side had significantly increased in both cases, suggesting an appreciable amount of reverse draw solute flux.

Date	5/15/2016							
Room Temp:	23.1 C (constant)							
Membrane SA (m^2):	0.01							
Memboxx 2.0 R	un #1 Active side	facing fe	ed soluti	on, unidir	ectional fl	ow, 2.0V	in parallel, with massing	
	Draw Soln	(1M Na	C1)	Feed	Soln (DI)	Water)		
-		Ì	<u> </u>	Approx.	,			
	Approx. Vol	Weight	Salinity	Vol	Weight	Salinity		
Time (hrs)	(mL)	(g)	(ppt)	(mL)	(g)	(ppt)	Volume change (mL):	2.6334
0	300	479.74	53	300	465.404	0	Observed flux (L/hr):	0.0026334
1	303	482.38	47	295	459.348	7	Expected flux (L/hr):	0.07
Mombory 2.0 Pr	un #2 Antivo sido	faaing du	aw soluti	on unidin	ontional f	ow 2.0V	in parallel, with massing	
Memboxx 2.0 Kt	III #2 Active side	racing or	aw soluti	on, union	ectional n	low, 2.0 v	in paranei, with massing	
	Draw Soln	(1M Na	C1)	Feed	Soln (DI)	Water)		
				Approx.				
	Approx. Vol	Weight	Salinity	Vol	Weight	Salinity		
Time (hrs)	(mL)	(g)	(ppt)	(mL)	(g)	(ppt)	Volume change (mL):	2.2174425
0	300	481.72	54	300	466.71	0	Observed flux (L/hr):	0.0022174
1	302	483.94	47	295	460.479	5	Expected flux (L/hr):	0.07

 Table 7. Memboxx 2.0 run results, 1M NaCl versus DI Water.

To rule out the possibility of a poor seal Memboxx 2.0 was reassembled, blue dye—whose particles are larger in diameter than the pores of the FO membrane—was mixed with DI water on one side of the membrane, and DI water was placed on the other. Allowing to sit for one week, no change in color on the DI water side was observed (Figure __).

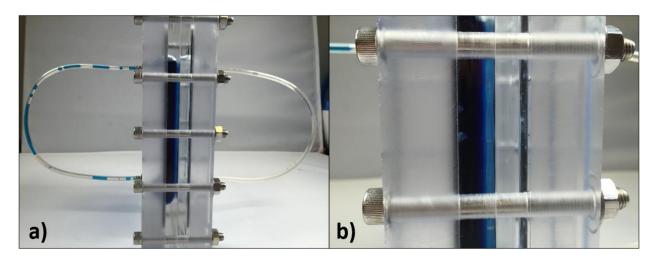


Figure 13. a) Memboxx 2.0 blue-dye test. b) Close-up of blue dye test.

After sending images of the Memboxx 2.0 setup and the results of the blue-dye test to Sterlitech (Figure 13), the membrane was found to be faulty and was returned with a full monetary refund. Based on the performance of Sterlitech's membrane, an alternative membrane manufacturer was chosen for Memboxx 3.0.

2.4 PROTOTYPE 3: MEMBOXX 3.0 2.4.1 DESIGN

Despite the robust and watertight design of Memboxx 2.0, it allowed for significant membrane stretching during experiments which in turn may have skewed the observed changes in volume. Thus Memboxx 3.0 sought to incorporate all the successes and address all the inadequacies of previous designs. Though emulating the construction of Memboxx 2.0 would have been ideal, editing the Mastercam X6 code and machining acrylic on the CNC machine were time-intensive, costly, and thus slow to iterate. Seeking to begin experimenting with the internal geometry of the cell channel, 3D printing was chosen as the fastest process for iteration of design and experimentation with internal geometries.

Before significant time was invested into the design of Memboxx 3.0, a proof of concept was attempted. A simple container (Figure 14a) was designed in Solidworks and then printed via a Makerbot Replicator 2, using polylactic acid (PLA) plastic.

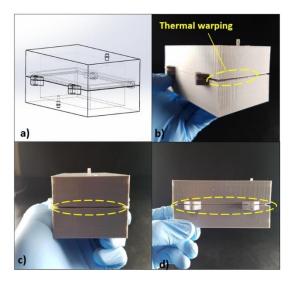


Figure 14. a) Proof-of-concept Solidworks design. b-d) Thermal warping of proof-of-concept 3D print.

The Makerbot Replicator 2 prints in an open-air environment, however, and large flat pieces such as this proof-of-concept are subject to thermal warping due to rapid heating and cooling (Figure 14b-d). Though certain techniques can be used to remedy thermal warping of 3D printing pieces printed in an open-air environment, the build volume of the Makerbot Replicator 2 only measures 153x155x285 mm³. The transition was thus made to an Dimension 1200 ES printer, boasting a build volume of 254x254x305 mm³, a closed environment, a heated build plate to prevent thermal warping, and soluble support material for complex geometries.

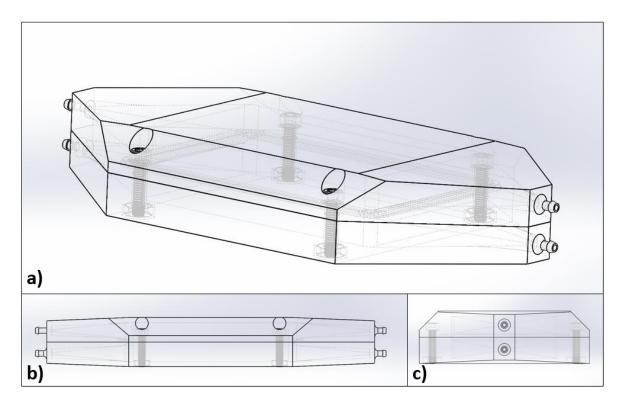


Figure 15. Memboxx 3.0 a) isometric view, b) side view, and c) front view.

Three major design changes were made between Memboxx 2.0 and Memboxx 3.0: (1) Because Memboxx 3.0 was 3D printed, it now only consisted of two pieces that were to be bolted together on either side of the membrane; (2) Memboxx 3.0 has a longer body, allowing for a longer flow channel to ideally accommodate fully developed flow; and (3) Male adapters parallel to the membrane surface were 3D printed for the entering and exiting flows (Figure 15b), thus eliminating the sharp bend in Memboxx 2.0 that did not allow for fully-developed flow; (4) Angled grooves were added around the perimeter of the membrane to stretch the membrane tight as the two pieces were pressed together (Figure 16).

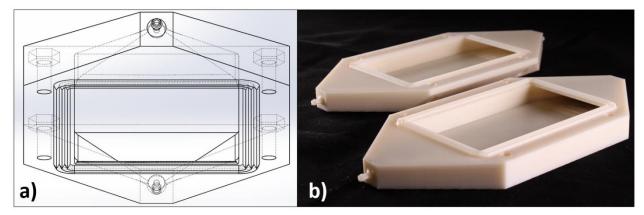


Figure 16. a) Solidworks tilted view of angled grooves. b) Memboxx 3.0 printed grooves.

Lastly, the major dimensions of Memboxx 3.0 (Figure 17) was constrained by the Dimension 1200 ES printer's build volume of 254x254x305 mm³.

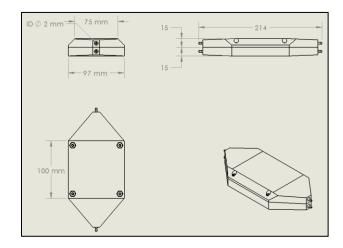


Figure 17. Major dimensions of Memboxx 3.0

2.4.2 FABRICATION

After designing the body in Solidworks, it was then sent to the Dimension 1200 ES and printed out of PLA material. After printing, it underwent a chemical bath for 24 hours to remove all support material. In assembling Memboxx 3.0, it was found that the angled teeth were printed larger than intended because their dimensions were smaller than the printer layer resolution, which resulted in a mismatched fit between male and female grooves (Figure 18).

Figure 18. Mismatched groove size on Memboxx 3.0.

Despite this, Memboxx 3.0 was watertight around its edges and a preliminary test could be performed.

2.4.3 TESTING

A preliminary water-tightness test (i.e. pumping DI water through assembly) revealed that the material on the slanted surfaces was porous and water foamed out (Figure 19).

To design the cell for concentration polarization mitigation, requires further design iteration that is yet to be realized. Design refinements and experiments towards this end are proposed in the following section.

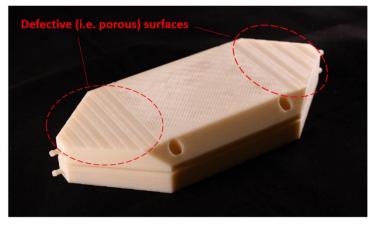


Figure 19. Identified porous surfaces on Memboxx 3.0.

3. FUTURE WORK

Provided more time, the fabrication of Memboxx 3.0 would be further refined by thickening the defective surface illustrated in Figure 19 and increasing the width of the grooves illustrated in Figure 18. With the construction of the base cell completed, investigation into the effects of channel geometries on concentration polarization would begin. Similar to prior experiments, the baseline performance of

Memboxx 3.0 would be established by running 300mL of draw solution (i.e. 1M NaCl) against 300mL of feed solution (i.e. DI Water) with smooth channels on either side (Figure 20a). Thereafter, the same experiment would be run with protruding geometries placed on the draw side. By varying the dimensions of the protrusions (Figure 20c), the geometries may be optimized for producing eddies in on the draw side—which in effect may increase mixing, decrease concentration polarization, and promote increased mass transfer across the membrane. A better understanding of this passive mixing process may be critical to improving water

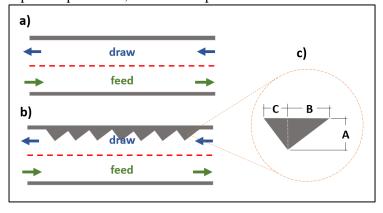


Figure 20. a) Smooth channel. b) Channel with geometries. c) Channel geometry parameters.

flux in forward osmosis systems from lab to industrial scales.

APPENDIX A

MasterCam X6 Code for Memboxx 2.0 (3-Column Format)

' 09-05-16 12:52 '	N220 G2 X6.2879 Y- 5.5662 R.3543	N390 G0 Z.25
' MCX FILE - PIECE1.EMCX-6 '	N230 G1 X.7987	N400 M9
' NC FILE -	N240 G2 X.4529 Y-5.2204	N410 M5
PIECE1.TXT '	R.3543	N420 M01
' MATERIAL - ALUMINUM INCH -	N250 G1 Y-1.0788	' 1/4 DRILL '
2024 '	N260 G2 X.7987 Y733 R.3543	N610 T16 M6
N100 G0 G17 G40 G70 G80 G90	N270 G0 Z.25	N620 S1000 M3
' 1/8 FLAT ENDMILL '	N280 X.4358 Y-5.2204	N630 G54
N110 T14 M6	N290 Z.2	N640 G0 X6.6929 Y- 5.9725
N120 S4000 M3	N300 G1 Z0799 F2.	N650 Z.1 M8
N130 G54	N310 Y-1.0788 F16.	N660 G83 X6.6929 Y- 5.9725 Z1.1 Z.1 Z.03 F2.1
N140 G0 X.7987 Y733	N320 G2 X.7987 Y7159 R.3543	N670 X5.1181
N150 M8	N330 G1 X6.2879	N680 X3.5433
N160 Z.25		
N170 Z.2	N340 G2 X6.6508 Y- 1.0788 R.3543	N690 X1.9685
N180 G1 Z0799 F2.	N350 G1 Y-5.2204	N700 X.3937
N190 X6.2879 F16.	N360 G2 X6.2879 Y-	N710 Y3267
N200 G2 X6.6337 Y-	5.5833 R.3543	N720 X1.9685
N200 G2 X6.6337 Y- 1.0788 R.3543	N370 G1 X.7987	N730 X3.5433
N210 G1 Y-5.2204	N380 G2 X.4358 Y-5.2204 R.3543	N740 X5.1181

N750 X6.6929	N960 Y-1.3061 Z0.	N1180 Y-3.2018 Z4587
N760 G80 M9	N970 X1.4301	N1190 Y-3.0974
N770 M5	N980 Y-3.0974 Z4587	N1200 Y-1.3061 Z0.
N780 M01	N990 Y-3.2018	N1210 X1.4001
' 1/4 FLAT ENDMILL '	N1000 Y-4.9931 Z0.	N1220 Y-3.0974 Z4587
N790 T17 M6	N1010 X1.4251	N1230 Y-3.2018
N800 S3000 M3	N1020 Y-3.2018 Z4587	N1240 Y-4.9931 Z0.
N810 G54	N1030 Y-3.0974	N1250 X1.3951
N820 G0 X1.445 Y-4.9931	N1040 Y-1.3061 Z0.	N1260 Y-3.2018 Z4587
N830 Z.25	N1050 X1.4201	N1270 Y-3.0974
N840 Z.1	N1060 Y-3.0974 Z4587	N1280 Y-1.3061 Z0.
N850 G1 Z0. F2.	N1070 Y-3.2018	N1290 X1.3901
N860 Y-3.2018 Z4587 F12.	N1080 Y-4.9931 Z0.	N1300 Y-3.0974 Z4587
N870 Y-3.0974	N1090 X1.4151	N1310 Y-3.2018
	N1100 Y-3.2018 Z4587	N1320 Y-4.9931 Z0.
N880 Y-1.3061 Z0.	N1110 Y-3.0974	N1330 X1.3852
N890 X1.4401	N1120 Y-1.3061 Z0.	N1340 Y-3.2018 Z4587
N900 Y-3.0974 Z4587	N1130 X1.4101	N1350 Y-3.0974
N910 Y-3.2018	N1140 Y-3.0974 Z4587	N1360 Y-1.3061 Z0.
N920 Y-4.9931 Z0.	N1150 Y-3.2018	N1370 X1.3802
N930 X1.4351	N1160 Y-4.9931 Z0.	N1380 Y-3.0974 Z4587
N940 Y-3.2018 Z4587	N1170 X1.4051	N1390 Y-3.2018
N950 Y-3.0974		

N1400 Y-4.9931 Z0.	N1620 Y-3.0974 Z4587	N1840 Y-4.9931 Z0.
N1410 X1.3752	N1630 Y-3.2018	N1850 X5.7164
N1420 Y-3.2018 Z4587	N1640 Y-4.9931 Z0.	N1860 Y-3.2018 Z4587
N1430 Y-3.0974	N1650 G0 Z.1	N1870 Y-3.0974
N1440 Y-1.3061 Z0.	N1660 Z.25	N1880 Y-1.3061 Z0.
N1450 X1.3702	N1670 X5.7364	N1890 X5.7114
N1460 Y-3.0974 Z4587	N1680 Z.1	N1900 Y-3.0974 Z4587
N1470 Y-3.2018	N1690 G1 Z0. F2.	N1910 Y-3.2018
N1480 Y-4.9931 Z0.	N1700 Y-3.2018 Z4587	N1920 Y-4.9931 Z0.
N1490 X1.3652	F12.	N1930 X5.7064
N1500 Y-3.2018 Z4587	N1710 Y-3.0974	N1940 Y-3.2018 Z4587
N1510 Y-3.0974	N1720 Y-1.3061 Z0.	N1950 Y-3.0974
N1520 Y-1.3061 Z0.	N1730 X5.7314	N1960 Y-1.3061 Z0.
N1530 X1.3602	N1740 Y-3.0974 Z4587	N1970 X5.7014
N1540 Y-3.0974 Z4587	N1750 Y-3.2018	N1980 Y-3.0974 Z4587
N1550 Y-3.2018	N1760 Y-4.9931 Z0.	N1990 Y-3.2018
N1560 Y-4.9931 Z0.	N1770 X5.7264	N2000 Y-4.9931 Z0.
N1570 X1.3552	N1780 Y-3.2018 Z4587	N2010 X5.6965
N1580 Y-3.2018 Z4587	N1790 Y-3.0974	N2020 Y-3.2018 Z4587
N1590 Y-3.0974	N1800 Y-1.3061 Z0.	N2030 Y-3.0974
N1600 Y-1.3061 Z0.	N1810 X5.7214	N2040 Y-1.3061 Z0.
N1610 X1.3502	N1820 Y-3.0974 Z4587	N2050 X5.6915
	N1830 Y-3.2018	

N2060 Y-3.0974 Z4587	N2280 Y-1.3061 Z0.	N2500 Z.25
N2070 Y-3.2018	N2290 X5.6615	N2510 M5
N2080 Y-4.9931 Z0.	N2300 Y-3.0974 Z4587	N2520 M01
N2090 X5.6865	N2310 Y-3.2018	' 5/32 DRILL '
N2100 Y-3.2018 Z4587	N2320 Y-4.9931 Z0.	N2630 T18 M6
N2110 Y-3.0974	N2330 X5.6565	N2640 S1500 M3
N2120 Y-1.3061 Z0.	N2340 Y-3.2018 Z4587	N2650 G54
N2130 X5.6815	N2350 Y-3.0974	N2660 G0 X1.3976 Y-
N2140 Y-3.0974 Z4587	N2360 Y-1.3061 Z0.	3.1496
N2150 Y-3.2018	N2370 X5.6515	N2670 Z.1 M8
N2160 Y-4.9931 Z0.	N2380 Y-3.0974 Z4587	N2680 G83 X1.3976 Y- 3.1496 Z1.1 Z.1 Z.03 F3.
N2170 X5.6765	N2390 Y-3.2018	N2690 X5.689
N2180 Y-3.2018 Z4587	N2400 Y-4.9931 Z0.	N2700 G80 M9
N2190 Y-3.0974	N2410 X5.6465	N2710 M5
N2200 Y-1.3061 Z0.	N2420 Y-3.2018 Z4587	N2720 M25
N2210 X5.6715	N2430 Y-3.0974	N2730 M22
N2220 Y-3.0974 Z4587	N2440 Y-1.3061 Z0.	
N2230 Y-3.2018	N2450 X5.6416	
N2240 Y-4.9931 Z0.	N2460 Y-3.0974 Z4587	
N2250 X5.6665	N2470 Y-3.2018	' 09-05-16 13:03 '
N2260 Y-3.2018 Z4587	N2480 Y-4.9931 Z0.	' MCX FILE - PIECE2.EMCX-6 '
N2270 Y-3.0974	N2490 G0 Z.1	FILUE2.EMUA-0

' NC FILE - PIECE2.TXT '	N260 G2 X1.8764 Y- 2.9829 R.1666	N460 G2 X1.8764 Y- 2.9829 R.1666
'MATERIAL -	N270 G1 Y-3.1496	N470 G1 Y-3.1496
ALUMINUM INCH - 2024 '	N280 Z2 F3.	N480 Z4 F3.
N100 G0 G17 G40 G70 G80 G90	N290 Y-3.3163 F12.	N490 Y-3.3163 F12.
' 1/4 FLAT ENDMILL '	N300 G2 X1.7098 Y- 3.1496 R.1667	N500 G2 X1.7098 Y- 3.1496 R.1667
N110 T17 M6	N310 G1 Y-1.3161	N510 G1 Y-1.3161
N120 S3000 M3	N320 X5.3768	N520 X5.3768
N130 G54	N330 Y-4.9831	N530 Y-4.9831
N140 G0 X1.8764 Y- 3.1496	N340 X1.7098	N540 X1.7098
N150 M8	N350 Y-3.1496	N550 Y-3.1496
N160 Z.25	N360 G2 X1.8764 Y- 2.9829 R.1666	N560 G2 X1.8764 Y- 2.9829 R.1666
N170 Z.2	N370 G1 Y-3.1496	N570 G1 Y-3.1496
N180 G1 Z1 F3.	N380 Z3 F3.	N580 G0 Z.25
N190 Y-3.3163 F12.	N390 Y-3.3163 F12.	N590 M9
N200 G2 X1.7098 Y- 3.1496 R.1667	N400 G2 X1.7098 Y- 3.1496 R.1667	N600 M5
N210 G1 Y-1.3161	N410 G1 Y-1.3161	N610 M01
N220 X5.3768	N420 X5.3768	' 1/4 BALL ENDMILL '
N230 Y-4.9831	N430 Y-4.9831	N620 T19 M6
N240 X1.7098	N440 X1.7098	N630 S3000 M3
N250 Y-3.1496	N450 Y-3.1496	N640 G54

N650 G0 X5.8611 Y- 5.1174	N870 X5.8312 Y-5.0865	N1090 Z0182
N660 Z.25	N880 Z005	N1100 Y-1.2445
	N890 Y-1.2127	N1110 X5.7962 Y-1.2506
N670 Z.0999	N900 Z0049	N1120 Z0214
N680 G1 Z0001 F2.	N910 X5.8262 Y-1.219	N1130 Y-5.0486
N690 Y-1.1818 F12.	N920 Z0066	N1140 X5.7913 Y-5.044
N700 X5.8561 Y-1.1837	N930 Y-5.0802	N1150 Z0249
N710 Z0004	N940 X5.8212 Y-5.0733	N1160 Y-1.2552
N720 Y-5.1155	N950 Z0084	N1170 X5.7863 Y-1.2597
N730 X5.8511 Y-5.1121		
N740 Z0009	N960 Y-1.2259	N1180 Z0289
N750 Y-1.1871	N970 X5.8162 Y-1.2297	N1190 Y-5.0395
N760 X5.8462 Y-1.199	N980 Z0104	N1200 X5.7813 Y-5.0346
N770 Z0016	N990 Y-5.0695	N1210 Z0332
N780 Y-5.1002	N1000 Z0103	N1220 Y-1.2646
	N1010 X5.8112 Y-5.0651	N1230 Z033
N790 X5.8412 Y-5.0965	N1020 Z0127	N1240 X5.7763 Y-1.2701
N800 Z0025	N1030 Y-1.2341	N1250 Z0381
N810 Y-1.2027	N1040 Z0126	N1260 Y-5.0291
N820 Z0024	N1050 X5.8062 Y-1.2391	N1270 Z0378
N830 X5.8362 Y-1.2072	N1060 Z0153	N1280 X5.7713 Y-5.0235
N840 Z0037		
N850 Y-5.092	N1070 Y-5.0601	N1290 Z0436
N860 Z0033	N1080 X5.8012 Y-5.0547	N1300 Y-1.2757

N1310 X5.7663 Y-1.2799	N1530 Y-4.9931	N1750 X5.6964
N1320 Z0498	N1540 X5.7314	N1760 Z2605
N1330 Y-5.0193	N1550 Z1902	N1770 Y-4.9931
N1340 X5.7613 Y-5.0144	N1560 Y-1.3061	N1780 X5.6914
N1350 Z0569	N1570 X5.7264	N1790 Z2675
N1360 Y-1.2848	N1580 Z205	N1800 Y-1.3061
N1370 Z0558	N1590 Y-4.9931	N1810 X5.6865
N1380 X5.7563 Y-1.2906	N1600 X5.7214	N1820 Z2731
N1390 Z0653	N1610 Z2176	N1830 Y-4.9931
N1400 Y-5.0086	N1620 Y-1.3061	N1840 X5.6815
N1410 X5.7513 Y-5.0042	N1630 X5.7164	N1850 Z2787
N1420 Z0755	N1640 Z2279	N1860 Y-1.3061
N1430 Y-1.295	N1650 Y-4.9931	N1870 X5.6765
N1440 Z0749	N1660 X5.7114	N1880 Z2843
N1450 X5.7463 Y-1.3002	N1670 Z2372	N1890 Y-4.9931
N1460 Z0893	N1680 Y-1.3061	N1900 X5.6715
N1470 Y-4.999	N1690 X5.7064	N1910 Z2894
N1480 X5.7414 Y-4.994	N1700 Z2462	N1920 Y-1.3061
N1490 Z1174	N1710 Y-4.9931	N1930 X5.6665
N1500 Y-1.3052	N1720 X5.7014	N1940 Z2938
N1510 X5.7364 Y-1.3061	N1730 Z2533	N1950 Y-4.9931
N1520 Z171	N1740 Y-1.3061	N1960 X5.6615

N1970 Z2982	N2190 Y-4.9931	N2410 X5.5866
N1980 Y-1.3061	N2200 X5.6216	N2420 Z3417
N1990 X5.6565	N2210 Z3259	N2430 Y-4.9931
N2000 Z3027	N2220 Y-1.3061	N2440 X5.5817
N2010 Y-4.9931	N2230 X5.6166	N2450 Z3433
N2020 X5.6515	N2240 Z3286	N2460 Y-1.3061
N2030 Z3067	N2250 Y-4.9931	N2470 X5.5767
N2040 Y-1.3061	N2260 X5.6116	N2480 Z3447
N2050 X5.6465	N2270 Z3313	N2490 Y-4.9931
N2060 Z3102	N2280 Y-1.3061	N2500 X5.5717
N2070 Y-4.9931	N2290 X5.6066	N2510 Z346
N2080 X5.6415	N2300 Z3337	N2520 Y-1.3061
N2090 Z3137	N2310 Y-4.9931	N2530 X5.5667
N2100 Y-1.3061	N2320 X5.6016	N2540 Z3474
N2110 X5.6366	N2330 Z3357	N2550 Y-4.9931
N2120 Z3171	N2340 Y-1.3061	N2560 X5.5617
N2130 Y-4.9931	N2350 X5.5966	N2570 Z3488
N2140 X5.6316	N2360 Z3377	N2580 Y-1.3061
N2150 Z3206	N2370 Y-4.9931	N2590 X5.5567
N2160 Y-1.3061	N2380 X5.5916	N2600 Z3498
N2170 X5.6266	N2390 Z3397	N2610 Y-4.9931
N2180 Z3233	N2400 Y-1.3061	N2620 X5.5517

N2630 Z3506	N2850 Y-4.9931	N3070 X5.4769
N2640 Y-1.3061	N2860 X5.5118	N3080 Z3593
N2650 X5.5467	N2870 Z3544	N3090 Y-4.9931
N2660 Z3514	N2880 Y-1.3061	N3100 X5.4719
N2670 Y-4.9931	N2890 X5.5068	N3110 Z3609
N2680 X5.5417	N2900 Z3545	N3120 Y-1.3061
N2690 Z3521	N2910 Y-4.9931	N3130 X5.4669
N2700 Y-1.3061	N2920 X5.5018	N3140 Z3627
N2710 X5.5367	N2930 Z3548	N3150 Y-4.9931
N2720 Z3529	N2940 Y-1.3061	N3160 X5.4619
N2730 Y-4.9931	N2950 X5.4968	N3170 Z3648
N2740 X5.5317	N2960 Z3553	N3180 Y-1.3061
N2750 Z3533	N2970 Y-4.9931	N3190 X5.4569
N2760 Y-1.3061	N2980 X5.4918	N3200 Z3671
N2770 X5.5268	N2990 Z356	N3210 Y-4.9931
N2780 Z3536	N3000 Y-1.3061	N3220 X5.4519
N2790 Y-4.9931	N3010 X5.4868	N3230 Z3696
N2800 X5.5218	N3020 Z3569	N3240 Y-1.3061
N2810 Z3538	N3030 Y-4.9931	N3250 X5.4469
N2820 Y-1.3061	N3040 X5.4818	N3260 Z3725
N2830 X5.5168	N3050 Z358	N3270 Y-4.9931
N2840 Z3541	N3060 Y-1.3061	N3280 X5.4419

N3290 Z3757	N3510 Y-4.9931	N3730 X1.2354 Y-1.1871
N3300 Y-1.3061	N3520 X5.402	N3740 Z0009
N3310 X5.4369	N3530 Z4196	N3750 Y-5.1121
N3320 Z3793	N3540 Y-1.3061	N3760 X1.2404 Y-5.1002
N3330 Y-4.9931	N3550 X5.397	N3770 Z0016
N3340 X5.4319	N3560 Z4299	N3780 Y-1.199
N3350 Z3832	N3570 Y-4.9931	N3790 X1.2454 Y-1.2027
N3360 Y-1.3061	N3580 X5.392	N3800 Z0025
N3370 X5.4269	N3590 Z4436	N3810 Y-5.0965
N3380 Z3876	N3600 Y-1.3061	N3820 Z0024
N3390 Y-4.9931	N3610 X5.387	N3830 X1.2504 Y-5.092
N3400 X5.422	N3620 Z4717	N3840 Z0037
N3410 Z3924	N3630 Y-4.9931	N3850 Y-1.2072
N3420 Y-1.3061	N3640 G0 Z3717	N3860 Z0033
N3430 X5.417	N3650 Z.25	N3870 X1.2554 Y-1.2127
N3440 Z3979	N3660 X1.2254 Y-1.1818	N3880 Z005
N3450 Y-4.9931	N3670 Z.0999	N3890 Y-5.0865
N3460 X5.412	N3680 G1 Z0001 F2.	N3900 Z0049
N3470 Z4041	N3690 Y-5.1174 F12.	N3910 X1.2604 Y-5.0802
N3480 Y-1.3061	N3700 X1.2304 Y-5.1155	N3920 Z0066
N3490 X5.407	N3710 Z0004	N3930 Y-1.219
N3500 Z4112	N3720 Y-1.1837	N3940 X1.2654 Y-1.2259

N3950 Z0084	N4170 X1.3003 Y-5.0395	N4390 Z0653
N3960 Y-5.0733	N4180 Z0289	N4400 Y-1.2906
N3970 X1.2704 Y-5.0695	N4190 Y-1.2597	N4410 X1.3352 Y-1.295
N3980 Z0104	N4200 X1.3053 Y-1.2646	N4420 Z0755
N3990 Y-1.2297	N4210 Z0332	N4430 Y-5.0042
N4000 Z0103	N4220 Y-5.0346	N4440 Z0749
N4010 X1.2753 Y-1.2341	N4230 Z033	N4450 X1.3402 Y-4.999
N4020 Z0127	N4240 X1.3103 Y-5.0291	N4460 Z0893
N4030 Y-5.0651	N4250 Z0381	N4470 Y-1.3002
N4040 Z0126	N4260 Y-1.2701	N4480 X1.3452 Y-1.3052
N4050 X1.2803 Y-5.0601	N4270 Z0378	N4490 Z1174
N4060 Z0153	N4280 X1.3153 Y-1.2757	N4500 Y-4.994
N4070 Y-1.2391	N4290 Z0436	N4510 X1.3502 Y-4.9931
N4080 X1.2853 Y-1.2445	N4300 Y-5.0235	N4520 Z171
N4090 Z0182	N4310 X1.3203 Y-5.0193	N4530 Y-1.3061
N4100 Y-5.0547	N4320 Z0498	N4540 X1.3552
N4110 X1.2903 Y-5.0486	N4330 Y-1.2799	N4550 Z1902
N4120 Z0214	N4340 X1.3253 Y-1.2848	N4560 Y-4.9931
N4130 Y-1.2506	N4350 Z0569	N4570 X1.3602
N4140 X1.2953 Y-1.2552	N4360 Y-5.0144	N4580 Z205
N4150 Z0249	N4370 Z0558	N4590 Y-1.3061
N4160 Y-5.044	N4380 X1.3302 Y-5.0086	N4600 X1.3652

N4610 Z2176	N4830 Y-1.3061	N5050 X1.44
N4620 Y-4.9931	N4840 X1.4051	N5060 Z3102
N4630 X1.3702	N4850 Z2787	N5070 Y-1.3061
N4640 Z2279	N4860 Y-4.9931	N5080 X1.445
N4650 Y-1.3061	N4870 X1.4101	N5090 Z3137
N4660 X1.3752	N4880 Z2843	N5100 Y-4.9931
N4670 Z2372	N4890 Y-1.3061	N5110 X1.45
N4680 Y-4.9931	N4900 X1.4151	N5120 Z3171
N4690 X1.3801	N4910 Z2894	N5130 Y-1.3061
N4700 Z2462	N4920 Y-4.9931	N5140 X1.455
N4710 Y-1.3061	N4930 X1.4201	N5150 Z3206
N4720 X1.3851	N4940 Z2938	N5160 Y-4.9931
N4730 Z2533	N4950 Y-1.3061	N5170 X1.46
N4740 Y-4.9931	N4960 X1.4251	N5180 Z3233
N4750 X1.3901	N4970 Z2982	N5190 Y-1.3061
N4760 Z2605	N4980 Y-4.9931	N5200 X1.465
N4770 Y-1.3061	N4990 X1.4301	N5210 Z3259
N4780 X1.3951	N5000 Z3027	N5220 Y-4.9931
N4790 Z2675	N5010 Y-1.3061	N5230 X1.47
N4800 Y-4.9931	N5020 X1.435	N5240 Z3286
N4810 X1.4001	N5030 Z3067	N5250 Y-1.3061
N4820 Z2731	N5040 Y-4.9931	N5260 X1.475

N5270 Z3313	N5490 Y-1.3061	N5710 X1.5498
N5280 Y-4.9931	N5500 X1.5149	N5720 Z3529
N5290 X1.48	N5510 Z346	N5730 Y-1.3061
N5300 Z3337	N5520 Y-4.9931	N5740 X1.5548
N5310 Y-1.3061	N5530 X1.5199	N5750 Z3533
N5320 X1.4849	N5540 Z3474	N5760 Y-4.9931
N5330 Z3357	N5550 Y-1.3061	N5770 X1.5598
N5340 Y-4.9931	N5560 X1.5249	N5780 Z3536
N5350 X1.4899	N5570 Z3488	N5790 Y-1.3061
N5360 Z3377	N5580 Y-4.9931	N5800 X1.5648
N5370 Y-1.3061	N5590 X1.5299	N5810 Z3538
N5380 X1.4949	N5600 Z3498	N5820 Y-4.9931
N5390 Z3397	N5610 Y-1.3061	N5830 X1.5698
N5400 Y-4.9931	N5620 X1.5349	N5840 Z3541
N5410 X1.4999	N5630 Z3506	N5850 Y-1.3061
N5420 Z3417	N5640 Y-4.9931	N5860 X1.5748
N5430 Y-1.3061	N5650 X1.5398	N5870 Z3544
N5440 X1.5049	N5660 Z3514	N5880 Y-4.9931
N5450 Z3433	N5670 Y-1.3061	N5890 X1.5798
N5460 Y-4.9931	N5680 X1.5448	N5900 Z3545
N5470 X1.5099	N5690 Z3521	N5910 Y-1.3061
N5480 Z3447	N5700 Y-4.9931	N5920 X1.5848

N5930 Z3548	N6150 Y-1.3061	N6370 X1.6596
N5940 Y-4.9931	N6160 X1.6247	N6380 Z3876
N5950 X1.5898	N6170 Z3648	N6390 Y-1.3061
N5960 Z3553	N6180 Y-4.9931	N6400 X1.6646
N5970 Y-1.3061	N6190 X1.6297	N6410 Z3924
N5980 X1.5947	N6200 Z3671	N6420 Y-4.9931
N5990 Z356	N6210 Y-1.3061	N6430 X1.6696
N6000 Y-4.9931	N6220 X1.6347	N6440 Z3979
N6010 X1.5997	N6230 Z3696	N6450 Y-1.3061
N6020 Z3569	N6240 Y-4.9931	N6460 X1.6746
N6030 Y-1.3061	N6250 X1.6397	N6470 Z4041
N6040 X1.6047	N6260 Z3725	N6480 Y-4.9931
N6050 Z358	N6270 Y-1.3061	N6490 X1.6796
N6060 Y-4.9931	N6280 X1.6446	N6500 Z4112
N6070 X1.6097	N6290 Z3757	N6510 Y-1.3061
N6080 Z3593	N6300 Y-4.9931	N6520 X1.6846
N6090 Y-1.3061	N6310 X1.6496	N6530 Z4196
N6100 X1.6147	N6320 Z3793	N6540 Y-4.9931
N6110 Z3609	N6330 Y-1.3061	N6550 X1.6896
N6120 Y-4.9931	N6340 X1.6546	N6560 Z4299
N6130 X1.6197	N6350 Z3832	N6570 Y-1.3061
N6140 Z3627	N6360 Y-4.9931	N6580 X1.6946

N6590 Z4436	N6980 X3.5433
N6600 Y-4.9931	N6990 X1.9685
N6610 X1.6995	N7000 X.3937
N6620 Z4717	N7010 G80 M9
N6630 Y-1.3061	N7020 M5
N6640 G0 Z3717	N7030 M25
N6650 Z.25	N7040 M22
N6660 M5	
N6670 M01	
' 1/4 DRILL '	
N6860 T16 M6	
N6870 S1000 M3	
N6880 G54	
N6890 G0 X.3937 Y3267	
N6900 Z.1 M8	
N6910 G83 X.3937 Y- .3267 Z.5 Z.1 Z.03 F2.1	
N6920 X1.9685	
N6930 X3.5433	
N6940 X5.1181	
N6950 X6.6929	
N6960 Y-5.9725	
N6970 X5.1181	

BIBLIOGRAPHY

- [1] IMPAX Asset Management, "Investing in Water: Global Opportunities in a Growth Sector," impaxam.com, 2013.
- [2] N. L. Le and S. P. Nunes, "Materials and membrane technologies for water and energy sustainability," *Sustainable Materials and Technologies*, pp. 1-28, 2016.
- [3] M. A. e. a. Shannon, "Science and technology for water purification in the coming decades.," *Nature*, pp. 301-310, 2008.
- [4] "Global Water PPP Market to Triple by 2020," 18 February 2016. [Online]. Available: http://www.bluefieldresearch.com/ns/global-water-ppp-market-triple-2020/.
- [5] K. Zotalis, E. G. Dialynas, N. Mamassis and A. N. Angelakis, "Desalination Technologies: Hellenic Experience," *Water*, pp. 1134-1150, 2014.
- [6] "Desalination by the Numbers," 30 June 2015. [Online]. Available: http://idadesal.org/desalination-101/desalination-by-the-numbers/.
- [7] J. Imbrogno and G. Belfort, "Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals?," *Annu. Rev. Chem. Biomol. Eng.*, pp. 29-64, 2016.
- [9] Almar Water Solutions, "Desalination Technologies and Economics," Mediterranean Regional Technical Meeting, Marseille, 2016.
- [10] G. Amy, N. Ghaffour, Z. Li, L. Francis and R. V. Linares, "Membrane-based seawater desalination: Present and future prospects," *Desalination*, no. 401, pp. 16-21, 2017.
- [11] D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin and M. Elimelech, "Forward osmosis: Where are we now?," *Desalination*, pp. 271-284, 2015.
- [12] R. W. Field and J. J. Wu, "Mass transfer limitations in foward osmosis: Are some potential applications overhyped?," *Desalination*, pp. 118-124, 2013.
- [13] W. C. Lay, J. Zhang, C. Tang, R. Wang, Y. Liu and A. G. Fane, "Factors affecting flux performance of forward osmosis systems," *Journal of Membrane Science*, pp. 394-395, 2012.
- [14] e. a. Shuaifei Zhao, "Recent developments in forward osmosis: Opportunities and challenges," *Journal of Membrane Science*, no. 396, pp. 1-21, 2012.
- [15] J. Schwinge, D. E. Wiley and D. F. Fletcher, "Simulation of the Flow around Spacer Filaments between Narrow Channel Walls. 1. Hydrodynamics," *Ind. Eng. Chem. Res.*, no. 41, pp. 2977-2987, 2002.
- [16] J. Liu, A. Iranshahi, Y. Lou and G. Lipscomb, "Static mixing spacers for spiral wound modules," *Journal of Membrane Science*, no. 442, pp. 140-148, 2013.
- [17] J. Schwinge, D. E. Wiley and D. F. Fletcher, "Simulation of the FLow around Spacer Filaments between Channel Walls. 2. Mass-Transfer Enhancement," *Ind. Eng. Chem. Res.*, no. 41, pp. 4879-4888, 2002.

- [18] S. Wardeh and H. Morvan, "CFD simulations of flow and concentration polarization in space-filled channels for application to water desalination.," *Chemical Engineering Research & Design*, vol. 86, no. 86, pp. 1107-1116, 2008.
- [19] M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Goergiadis, B. J. Marinas and A. M. Mayes, "Science and technology for water purification in the coming decades.," *Nature*, pp. 301-310, 2008.
- [20] S. Zhao, L. Zou, C. Y. Tang and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges," *Journal of Membrane Science*, no. 396, pp. 1-21, 2012.
- [21] R. F. Service, "Desalination Freshens Up," Science, pp. 1088-1090, 2006.
- [22] J. Koschikowski, "Water Desalination: When and Where WIll it Make Sense?," Fraunhofer, Washington, 2011.
- [23] B. W. T. Blog, "Reverse Osmosis: What is it and why you should have one.," 28 June 2015. [Online]. Available: https://patch.com/michigan/hartland/reverse-osmosis-what-it-why-you-shouldhave-one-0. [Accessed 7 April 2017].

ACADEMIC VITA

Luke F. Gockowski

LFG5055@PSU.EDU · 600 E Pollock Rd, University Park, PA 16802 · 717 339 9572

EDUCATION

The Pennsylvania State University B.S. in Mechanical Engineering Penn State Millennium Scholar Cumulative GPA: 3.63/4.00

RESEARCH & WORK EXPERIENCE

Wong Lab for Nature-Inspired Engineering, Research Assistant | University Park, PAJun 2014-Pres.Principal Investigator: Dr. Tak Sing Wong

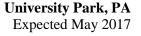
PROJECT 1: "Design & Fabrication of Lab-Scale Forward Osmosis Desalination Unit." (May 2015-pres.)

- Designed and constructed three models of a lab-scale forward osmosis system (images available at gockowski.com)
- Collaborating with two peers in the sciences to test system compatibility with bio-inspired membrane
- Solicited investment of \$1,400 from grants and angel investors

PROJECT 2: "Particle Selectivity on Free-Standing Liquid Membranes." (Aug 2014-May 2015)

- Contributed data and supporting figures to publication of results, recently submitted to *Nature* for review
- Awarded 2nd Place in engineering for poster presentation on *Particle Retention Mechanisms on a Liquid Membrane* at Penn State Undergraduate Research Symposium
- Measured and quantified physical properties of a novel membrane using a variety of lab instruments

PROJECT 3: "Anisotropic Slippery Liquid-Infused Porous Surfaces (SLIPS)" (May-Aug 2014)


- Developed mathematical model necessary to create a surface capable of one-directional liquid repellency
- Presented findings to corporate executives of the Pittsburgh Plate & Glass (PPG) company

MIT Media Lab: Mediated Matter Group, Research Assistant | Boston, MA *Principal Investigator: Dr. Neri Oxman*

- Designed and constructed a 3D-printing robotic arm for the intended purpose of printing large-scale architectures out of bio-degradable materials.
- Presented design, product, and findings to 150+ members of MIT's Media Lab
- Contributed to publication currently in preparation

Tropical Field Ecology Research Course, Student | Costa Rica Principal Investigator: Dr. James Marden

- Traveled to Costa Rica with a team of 14 science students to conduct three tropical ecology research projects
- Presented findings to Penn State professors and Costa Rican field ecologists on 1) leafcutter ant behavior, 2) primary and secondary forest carbon content, and 3) taxa richness of aquatic invertebrates
- Collaborated with three teams to write and publish technical reports of our findings

Jun-Aug 2016

Dec 2015-Jan 2016

The Boeing Company, Mechanical Systems Intern | Long Beach, CA

- Engineered solution to defective aileron deflection actuator (ADA) in Lufthansa's MD-11 cargo aircraft
- Submitted necessary engineering drawing changes, now effective on all MD-11 aircraft
- Independently learned CATIA V-5, then modeled MD-11 ADA Assembly, Boeing 757 seat track, and Boeing 757 landing gear fairing

ORAL & POSTER PRESENTATIONS

`

[1] "Robotic Extruder for the Water-Based Digital Fabrication Platform." * August 2016, Massachusetts Institute of

Technology, Boston, MA.

- [2] "Particle retention mechanisms on a liquid membrane." * March 2015, Penn State University, University Park, PA.
- [3] "Anisotropic Slippery Surfaces Inspired by Nature: When Pitcher Plant Meets Butterfly." * July 2014, Penn State

University, University Park, PA.

* Oral presentation and poster presentation, with same title.

LEADERSHIP EXPERIENCE

National Society of Black Engineers (NSBE), Corporate Liaison University Park, PA	May 2016-Pres.
 Organized 25+ recruiting events, information sessions, meetings, and social activities between Penn State NSBE students and companies Solicited over \$20,000 in corporate donations to date 	
Presidential Leadership Academy, Member University Park, PA	August 2014-Pres.
 Gaining formal training on ethical leadership in the workplace and beyond Debated with President of Penn State University and Dean of Schreyer's Honors College on local and global societal issues Offered guidance, support, and mentorship to underclassman academy members 	
SELECTED PROJECTS	
Desalination Venture for Mozambique University Park, PA	May 2016-Pres.
 Venture aims to create a low-cost, technologically appropriate desalination system for Xai Xai, Mozambique Created business model, SolidWorks modeled system prototype, published venture website, and presented to Penn State judges (https://sites.psu.edu/semsalsystems/) 	
Formula SAE Cooling System University Park, PA	Aug 2013-May 2014
 Designed and built a high-performance cooling system for a 600cc motorcycle engine Mentored and integrated four FSAE members into following years' team 	
OUTREACH & COMMUNITY SERVICE	

Multicultural Engineering Program Orientation (MEPO), Design Lead | University Park, PA Aug 2016

Organized a sneaker design competition for 60 incoming Penn State freshman

• Prepared student teams to present business proposals to members of Marathon Petroleum Corp.

USA Science & Engineering Festival, Exhibitor | Washington D.C.

• Communicated materials research and demonstrations to 2000+ parents & children during three-day event in Washington D.C.

SKILLS

`

Design & Coding: Machining & Fabrication:		Languages:	
 MATLAB Coding Software SolidWorks CAD Software CATIA V5 CAD Software 	 Machining (i.e. lathes, drills, OMAX waterjet, etc.) 3D Printing (i.e. Makerbot & UP) 	:	English (native) French (fluent) Spanish (learning)
Software:Microsoft Word, Excel, PowerPoint, and Outlook	Photoshop CCAdobe Premiere	:	WordPress FL Studio
SCHOLARSHIPS & AWARDS			
Millennium Scholarship (\$15,000 per semester)			2014-2017
2 nd Place Poster in Engineering, Undergraduate Research Exhibition 2015			Mar 2015
College of Engineering Research Initiative (CERI) Grant (\$2,500 per semester)			2014-2015
Minority Undergraduate Research Experience (MURE) (\$500 per semester)			2013-2014
PPG Fellowship for Summer Research (\$5,000 stipend)			Jun-Aug 2014
Winner of Engineering & Design Class I	Project		Nov 2013