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ABSTRACT 
 

Angiosperm leaves present a classic identification problem due to their morphological 

complexity. Computer-vision heat maps illustrate diagnostic regions for identification, providing 

novel insights through visual feedback. I investigate the potential of analyzing leaf heat maps to 

reveal novel, human-friendly botanical information with applications for extant- and fossil-leaf 

identification. I developed a manual scoring system for hotspot locations on published computer-

vision heat maps of cleared leaves that showed diagnostic regions for family identification. Heat 

maps of 3114 cleared leaves of 930 genera in 14 angiosperm families were analyzed. The top-5 

and top-1 hotspot regions of highest diagnostic value were scored for 21 leaf locations. The 

resulting data were analyzed using cluster and principal component analyses and visualized using 

box plots. I manually identified similar features in fossil leaves to informally demonstrate 

potential fossil applications. The method successfully mapped machine feedback using standard 

botanical language, and distinctive patterns emerged for each family. Hotspots were concentrated 

on secondary veins (Salicaceae, Myrtaceae, Anacardiaceae, Rubiaceae, Celastraceae), tooth 

apices (Betulaceae, Rosaceae), and on the little-studied leaf margins of untoothed leaves 

(Rubiaceae, Annonaceae, Ericaceae, Apocynaceae, Fabaceae). Results from multivariate 

analyses were driven by similar leaf features. The results echo many traditional observations, 

while also showing that most diagnostic leaf features remain undescribed. Heat maps that 

initially appear to be noise can be translated, and the knowledge obtained can be used offline, 

highlighting paths forward for botanists and paleobotanists to discover new, family-diagnostic 

botanical characters. 
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Chapter 1  
 

Introduction 

 

Many species of plants today are struggling due to anthropogenic impacts including climate 

change, deforestation, overexploitation, invasive species, and many other issues (Brummitt et al., 

2021). Approximately one third of all tree species are currently threatened with extinction. While 

all species have intrinsic value and should be conserved, many of these species are also 

ecologically, medicinally, economically, or ethnobotanically important (Cámara-Leret et al., 

2019; Cámara-Leret & Bascompte, 2021). Conservation biologists are rapidly designing 

conservation strategies to protect and preserve these species but for many, their ecologies and 

environmental requirements are poorly understood. Most plant species today live only in a subset 

of the habitat that they could survive in, bracketed by their evolutionary histories, biotic 

interactions, and human impacts. This theoretical habitat range is known as a fundamental niche 

and the region where the species is currently present is known as the realized niche (Kearney & 

Porter, 2004). Mapping a fundamental niche can be very difficult if the organism’s current 

distribution is heavily restricted by humans, however, fossils can be used to remediate this issue.  

 Fossils can track the environmental conditions at which a species can survive; 

especially for plant fossils, where species can persist for tens of millions of years and some 

genera over 100 million years. Fossils are able to record how plants respond to changes in 

ecosystems due to climate and other environmental perturbations (Ivory et al., 2016), which can 

be applied to modern pressures and used to make informed conservation decisions. 

Unfortunately, this method is mostly restricted to the Cenozoic for most plant species, but the 
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applications of the plant deep time fossil record, while more abstract at times, are no less 

important. The fossil record can be used like as a natural evolutionary laboratory (Dietl & Flessa, 

2011), similar to the Galapagos Islands or Evolution Canyon in Israel, but with the added fourth 

dimension of time. Many paleobotanists study how plants respond to extinction by studying past 

mass extinction events (Harnik et al., 2012) and their recovery period. Following the End-

Permian mass extinction event, Looy et al. (1999) discovered a crash of global forests and a 

domination of herbaceous taxa. This echoes pioneer and disaster taxa today that will thrive in 

regions following severe disturbance (e.g., Marler and del Moral, 2011). Similar results have 

been found following the Cretaceous-Paleogene mass extinction in North America (Barclay et 

al., 2003; Barclay & Johnson, 2004) and New Zealand (Vajda et al., 2001) but without the 

extinction, modern rainforests would likely not exist as the event led to a massive restructuring 

of plant communities in the neotropics (Carvalho et al., 2021).  

 Leaves are the most abundant macroscopic plant organ produced today, and they 

are the most common plant macrofossil of the last 350 million years. Fossil leaves are oftentimes 

very difficult to identify. Most leaves lack diagnostic characters for taxonomic identification 

(Wilf, 2008), which can make linking these fossil applications to the modern almost impossible. 

Leaf architecture displays immense morphological disparity and complexity (Doyle, 2007; Feild 

et al., 2011; Hickey & Wolfe, 1975), and are widely acknowledged to contain unharnessed 

phylogenetic signals (Doyle, 2007; Little et al., 2010; Seeland et al., 2019). Hickey and Wolfe 

(1975) surveyed angiosperm leaf architecture variation, but their study preceded the 

reorganization of the angiosperm phylogeny due to molecular data (Angiosperm Phylogeny 

Group, 1998, 2016; Doyle, 2007; Leebens-Mack et al., 2019). The mass digitization of natural 

history collections and herbaria (Bakker et al., 2020; Beaman & Cellinese, 2012; Bebber et al., 
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2010; Belhumeur et al., 2008; Hedrick et al., 2020; Marshall et al., 2018; Page et al., 2015; Soltis 

et al., 2020) provides botanists access to abundant sources of data for leaf architecture analyses 

and computer vison applications. Despite the significant work that has been done on many 

groups, most of the more than 400 angiosperm families lack known leaf architecture characters 

that could be used for fossil identification (Wilf, 2008).  

Field guides and botany courses often emphasize family-level identification as a 

traditional starting point, and they incorporate leaf architecture characters to a variable extent. A 

few guides are well-known for their use of fine foliar features to recognize plant families 

(Gentry, 1993; Keller, 2004; Kubitzki & Bayer, 2013; Simpson, 2010; Soepadmo & Wong, 

1995). Flowers and other reproductive organs — the regions that contain the most well-defined 

taxonomic features (Rzanny et al., 2019; Seeland et al., 2019) — are ephemeral and often 

physically inaccessible, which is why vegetative characters are often needed to identify plants 

out of season (Gentry, 1993). Paleobotany also requires a family-level approach because most 

fossil angiosperm leaves belong to extinct species and genera from extant families (Wilf, 2008; 

Wilf et al., 2016). Millions of fossil leaves are currently housed in museum collections 

worldwide with incorrect or no known identification (Dilcher, 1974; Marshall et al., 2018), 

unlocking this evolutionary dark data can help reconstruct the fossil records for thousands of 

plant species worldwide. Recent advancements in computer vision technology suggest that it 

might be possible to learn new taxonomic features stored in leaf architecture that could possibly 

be used to identify modern and fossil leaves.  

Here, I present a quantitative analysis of the locations of diagnostic regions for family-

level identification that were found using computer vision in Wilf et al. (2016). I attempt to 

decode the SIFT algorithm’s family-level identification of cleared leaves through location-
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mapping the hottest hotspots on the Wilf et al. (2016) heat maps. This is, to my knowledge, the 

first attempt to back-translate and interpret computer-vision heat-maps into botanical terms. By 

selecting the most diagnostic regions in the families with large numbers of published heat maps 

and scoring the squares for strictly defined leaf architecture features (following Ellis et al., 

2009), I developed a novel method to interpret any computer vision heat map in ordinary 

botanical terms and to begin the process of converting some computer vision signals into human-

friendly characters. Although the majority of the patterns identified by the SIFT algorithm 

probably cannot be extracted and translated into botanical characters, even a handful of new 

characters obtained from the analysis of heat-map locations could unlock significant dark data 

stored within angiosperm leaf architecture.   
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Chapter 2  
 

Literature Review 

 

Computer vision algorithms categorize complex patterns, often with a capacity far beyond 

humans (Gouveia et al., 1997), and heat maps can be generated to visualize diagnostic regions 

that were not previously noticed. These visualizations are important for interpreting computer 

vision results and guiding human users to discover novel information. Computer vision has been 

used extensively for plant identification, although most efforts have focused on the species level; 

more work on higher taxa would benefit evolutionary interpretations and paleobotanical 

applications. There have been few efforts to unpack the diagnostic features revealed from AI for 

the benefit of botanists. 

Computer vision studies have successfully identified species using live plants (Champ et 

al., 2020; Joly et al., 2016; Kumar et al., 2012; Minowa & Nagasaki, 2020; Rzanny et al., 2019; 

Tcheng et al., 2016; S. Unger et al., 2020) and herbarium sheets (Belhumeur et al., 2008; 

Carranza-Rojas et al., 2017; Little et al., 2020; Romero et al., 2020; J. Unger et al., 2016). 

Machine learning identification of fossil pollen at the species level has advanced significantly 

(Punyasena et al., 2012; Romero et al., 2020; White, 2020). Automated species identification of 

leaf images, in particular, is a well-studied problem in computer vision (Almeida et al., 2020; 

Bama et al., 2011; Banerjee & Pamula, 2020; Bryson et al., 2020; Caballero & Aranda, 2010; 

Carranza-Rojas, Mata-Montero, et al., 2018; Charters et al., 2014; Grinblat et al., 2016; Hu et al., 

2012; Im et al., 1998; Jamil et al., 2015; Laga et al., 2012; Larese, Namías, et al., 2014; Larese, 

Bayá, et al., 2014; Larese et al., 2012; Larese & Granitto, 2016; Mata-Montero & Carranza-

Rojas, 2015; Mouine et al., 2012; Nam et al., 2008; Park et al., 2008; Priya et al., 2012; Pryer et 
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al., 2020; Soltis et al., 2020; Wäldchen et al., 2018; Wäldchen & Mäder, 2018; S. G. Wu et al., 

2007; Zhao et al., 2015). A small but growing number of computer-vision studies have 

successfully achieved identification of extant leaves at the family level (Carranza-Rojas, Joly, et 

al., 2018; Schuettpelz et al., 2017; Seeland et al., 2019; Wilf et al., 2016). Most computer-vision 

studies on leaves produce black box results, i.e., without visualizations or interpretations of 

diagnostic regions. However, visualizations such as heat maps (Fig. 1; Lu et al., 2012; Lee et al., 

2015; Wilf et al., 2016; Lee et al., 2017; Champ et al., 2020; Vizcarra et al., 2021) provide 

botanists with the potential to understand what leaf features are driving identification. Heat maps 

allow botanists to learn from artificial intelligence and provide a novel, but so far apparently 

unused, pathway to generate potential new taxonomic characters and “gestalt” visual guidance 

for the identification of extant and fossil leaves.  

Wilf et al. (2016) and Seeland et al. (2019) reported two computer-vision studies that 

identified plants at the family level and produced heat-map outputs. I build here on the Wilf et al. 

(2016) study that learned leaf features using a machine-learning approach known as sparse 

coding and trained a Support Vector Machine (SVM) to identify cleared leaves at the family 

level with 72% overall accuracy (vs. chance accuracy of 5.6%, from 19 families studied using 

7,597 cleared leaves). The algorithm learned diagnostic features to identify families that have 

virtually no known leaf-architecture characters with very high accuracy, for example 90% of 

Rubiaceae. The algorithm learned entirely from local, small-scale (16x16 pixel, from images 

rescaled to 1024 pixels in longest dimension) sample crops of the leaf images, providing a wealth 

of new information about fine leaf features; thus, the method cannot evaluate many of the larger-

scale holistic patterns that botanists traditionally use. A heat-mapping algorithm coded the 

diagnostic significance (classifier weight) for correct computer-vision identification to family of 
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each small image crop directly on the cleared-leaf images. Briefly, the locations and intensities 

that corresponded to the maximum classifier weights associated with individual features are 

shown using red saturation (Fig. 1). In other words, the redder the heat-map square, the more 

important the corresponding leaf region was for placing the individual cleared leaf in its correct 

plant family. Most locations have zero value because only the most representative crops are used 

by the classifier. The initial study (Wilf et al., 2016) also provided a brief qualitative analysis of 

the leaf architectural features highlighted in the heat maps. 
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Chapter 3  
 

Experimental Details 

Data source 

I analyzed the previously published heat maps from the set produced by Wilf et al. (2016; Fig. 

1). I scored all families with over 50 heat maps available, totaling 3114 leaves from 14 families 

and ca. 930 genera. For simplicity, I use “leaves” to refer to both leaves and leaflets. In each heat 

map, the red intensities of each square represent the diagnostic value of the respective small 

region of the leaf for correct family placement (Wilf et al., 2016). All published heat maps used 

here, available on Figshare (https://doi.org/10.6084/m9.figshare.1521157.v1), were generated 

from prepared images of the Jack A. Wolfe contribution to the National Cleared Leaf Collection 

(NCLC-Wolfe), as described in Wilf et al. (2016); NCLC-Wolfe is housed in the Division of 

Paleobotany, Smithsonian National Museum of Natural History, Washington, D.C. Images and 

metadata from the collection can be viewed online at the Cleared Leaf Image Database website 

(www.clearedleavesdb.org; Das et al., 2014; higher-resolution images are available via Wilf et 

al., 2021). The National Cleared Leaf Collection is the largest and most phylogenetically diverse 

compilation of cleared leaves in the world, totaling ca. 25,000 leaves of mounted and stained 

cleared-leaf slides. Cleared leaves remove the mesophyll of leaves and expose leaf venation, 

making them the best extant counterparts to fossil leaves. The two cleared leaf contributions 

(NCLC-Hickey and NCLC-Wolfe) were moved, curated, and combined from 1992-2013 at the 

NMNH but were created separately by Drs. Hickey and Wolfe beginning in the 1960s to study 

the leaf architecture of angiosperm leaf fossils (Wilf et al., 2021) and were used extensively in 

their inspection of angiosperm leaf architecture (Hickey and Wolfe, 1975). 

https://doi.org/10.6084/m9.figshare.1521157.v1
http://www.clearedleavesdb.org/
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Figure 1. Representative heat maps (Wilf et al. 2016) with top-5 squares marked, showing 
variation in leaf architecture and hotspot locations. Yellow circles, top-1 squares; blue circles, 
the other four. Top row, left to right: Fitzalania heteropetala (NCLC-W catalog no. 14543), 
Meiogyne maclurei (3997), Betula utilis (8529), Alnus trabeculosa (6718), Comarostaphylis 
discolor (3775), Psammisia hookeriana (13044). Middle row, left to right: Fagus longipetiolata 
(1412), Quercus mohriana (10721), Apeiba tibourbou (1388), Tilia perneckensis (16082), 
Callistemon citrinus (12413), Myrtus lutescens (10109). Bottom row, left to right: Crataegus 
mexicana (11979), Sorbaria stellipila (8806), Chomelia protracta (5586), Faramea anisocalyx 
(7375), Acer sieboldianum (1220), Dipteronia sinensis (1134). For example, using Table 1, the 
top-1 square in the top-left heat map would receive a score (of 1) both for margin of the basal 
25% of the blade and for tertiary veins, with all other features scoring as zero. 
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Scoring system 

Using Adobe Acrobat Pro DC (continuous release versions; Adobe Inc., San Jose, 

California, United States), I manually selected the five squares with the highest red intensities for 

each cleared-leaf heat map. I found selection by eye to be more accurate in practice than digital 

tools such as the Adobe eyedropper tool. Although an automated machine ranking and markup 

could have been generated here from the primary data, the manual markup and the repeated 

observations involved allowed me to develop a more useful scoring system. The data were 

scored in two versions: the top-5 squares, manually marked in blue circles, and, of those five, the 

top-1 square, manually marked in yellow circles (Fig. 1).  

The 14 families — Anacardiaceae, Annonaceae, Apocynaceae, Betulaceae, Celastraceae, 

Ericaceae, Fabaceae, Fagaceae, Malvaceae, Myrtaceae, Rosaceae, Rubiaceae, Salicaceae, and 

Sapindaceae — in nature include ca. 71,000 extant species, or ca. 20% of all angiosperm species, 

following The Plant List (http://www.theplantlist.org). Wilf et al. (2016) placed the cleared 

leaves into their respective, updated families and genera following APG III (Angiosperm 

Phylogeny Group, 2009) and other standard sources, and a handful of corrections were applied 

here, namely the removal of four Nothofagus leaves from Fagaceae that had been overlooked. 

Some of these families have well-studied leaf-fossil records, including Anacardiaceae (e.g., 

Ramírez et al., 2000; Ramírez & Cevallos‐Ferriz, 2002; Sawangchote et al., 2009, 2010), 

Fagaceae (e.g., Manchester and Crane, 1983; Crepet and Nixon, 1989; Wu et al., 2014; Wilf et 

al., 2019), Betulaceae (e.g., Crane, 1981; Sun and Stockey, 1992; Pigg et al., 2003; Correa-

Narvaez and Manchester, 2021), Malvaceae (e.g., Carvalho et al., 2011; Lebreton Anberrée et 

al., 2015), Myrtaceae (e.g., MacGinitie, 1969; Manchester et al., 1998; Gandolfo et al., 2011; 

Tarran et al., 2018), Sapindaceae (e.g., Manchester, 2001; McClain and Manchester, 2001), 

http://www.theplantlist.org/
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Salicaceae (e.g., Manchester et al., 1986, 2006; Boucher et al., 2003), Fabaceae (e.g., Herendeen 

& Herrera, 2019; Lyson et al., 2019; Owens et al., 1998), and Rosaceae (e.g., DeVore et al., 

2004; DeVore and Pigg, 2007; Kellner et al., 2012). Other families in this study have 

depauperate leaf-fossil records and, often poorly understood leaf architecture, including 

Ericaceae (e.g., Jordan et al., 2010), Apocynaceae (e.g., Del Rio et al., 2020), Annonaceae (e.g., 

Pirie and Doyle, 2012), Celastraceae (e.g., Bacon et al., 2016), and Rubiaceae (e.g., Roth and 

Dilcher, 1979; Dilcher and Lott, 2005; Graham, 2009). Many families with poor leaf-fossil 

records are represented by other organ remains not discussed here (e.g., Taylor et al., 2009; Friis 

et al., 2011; Xing et al., 2016).  

 For each leaf, the top-5 and top-1 square locations were scored using a system I 

developed based on the definitions of the Manual of Leaf Architecture (Ellis et al., 2009). 

Criteria for the scoring definitions (defined in Table 1) included leaf locations that are 

unambiguous, likely to be preserved in the fossil record, and rapidly-scorable to handle 

thousands of heat maps in a reasonable amount of time. The 21 scoring definitions, scored as 

presence-absence, are divided into location categories for the base, apex, or midsection (rest) of 

the blade; venation features; tooth and other margin features; and noise. The three noise scores 

report whether the hotspot square is at the petiole insertion, off the leaf, or a damaged section of 

the leaf. Due to irregular preservation of petioles in the cleared-leaf collection used, the petioles 

were previously removed digitally from the cleared leaf images (Wilf et al. 2016), and thus, any 

signal at the petiole insertion is likely artifactual. Leaf damage includes both natural (insect and 

fungal damage obliterating parts of leaves) and human (mounting issues, crystallization, and 

bubbles in mounting medium, breaks) causes. These features do not directly represent leaf 

architecture and thus were not used in quantitative analyses. I aimed to reduce overlaps in the 



12 

scores and related ambiguities by increasing the restriction criteria where needed (Table 1). For 

example, almost any area of most leaves has tertiary veins, sometimes joining lower-order 

primary or secondary veins within a small selected area, and in other cases not. Therefore, I only 

scored tertiary veins if the hotspot did not also include a primary, secondary, or intersecondary 

vein. Hotspots with both primary and secondary veins (or primary and intersecondary) were 

scored as “primary-secondary,” and hotspots with both secondary and intersecondary veins were 

scored only as secondary veins. Similarly, hotspots intersecting both a tooth apex and flank were 

scored for the tooth apex.  

 

Table 1. Scoring definitions for hotspot squares. 

Feature1 Definition 
In basal 25%  In the first quartile of blade length. 
Margin of basal 25%  Intersecting basal margin. 
In midsection 50%  In the second or third quartiles of blade length. 
Margin of midsection 50%  Intersecting margin of blade midsection.  
In apical 25%  In the fourth quartile of blade length. 
Margin of apical 25%  Intersecting blade apex. 
Margin of lobe Intersecting margin of leaf lobe.  
In lobe  In leaf lobe.  
Primary vein  Intersecting a primary vein; can include tertiaries but not secondaries. 
Primary-secondary  Intersecting either a primary and a secondary or a primary and an intersecondary vein; 

veins can be intersecting or separate. 
Secondary vein Intersecting any type of secondary vein, including major, minor, intramarginal, and 

interior secondaries, but not a primary vein. 
Intersecondary vein  Intersecting an intersecondary vein but not a primary or secondary vein. 
Tertiary vein  Intersecting tertiary veins but not lower-order veins. 
Tooth apex  Intersecting the tooth apex.  
Tooth sinus  Intersecting the tooth sinus.  
Tooth proximal flank  Intersecting the tooth proximal flank but not the apex.  
Tooth distal flank  Intersecting the tooth distal flank but not the apex.  
Mucro  Intersecting a mucronate apex. 
Petiole insertion  On the petiole insertion point. 
Damaged area  On a damaged (ripped, torn, folded, contains holes) section of the blade. 
Off leaf  Not located on the blade. 

1See Materials and Methods for more details of scoring. 
 

For consistency, if a hotspot square was in any way touching the margin of the leaf, its 

location was scored as on the margin, no matter the percentage of square touching the margin. 

Lobes and teeth were demarcated with straight lines from sinus to sinus, following the methods 
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of Huff et al. (2003). Basal lobes were demarcated by a perpendicular line across the lobe’s 

primary vein from the lobe’s apical sinus, and the lobes of bilobed leaves were demarcated with 

a line perpendicular to the midvein terminus. The annotated heat maps show marked lobes, when 

present, and horizontal lines indicate the basal and apical quarters of the leaf. Basal extensions, 

like those in leaves of many Bauhinia spp. (Fabaceae), are not traditionally considered lobes 

(Ellis et al., 2009) and were not scored as such. I also recorded additional, general information, 

including the percentages of toothed leaves, lobed leaves, and leaves with mucros for each family 

(Table 2). Note that the red intensity of the hottest heat-map squares varies by family, with some 

(such as Salicaceae or Betulaceae) having more saturated top-5 squares compared with other 

families (such as Sapindaceae, Rubiaceae, or Apocynaceae; see Fig. 1). However, this pattern 

seems only to indicate the evenness of the distribution and does not seem to be related to SIFT 

accuracy. 

The procedure resulted in two presence-absence matrices of scores (i.e., using the terms 

in Table 1) by specimen for each family, one matrix each for top-1 and top-5 squares, thus 

totaling 28 submatrices. The presence-absence data were analyzed through family-level basic 

statistics (mean, median) for the top-5 and top-1 matrices, visualized using box plots, and 

analyzed using multivariate ordinations and cluster analyses. BoxPlotR software was used to 

construct the box plots (http://shiny.chemgrid.org/boxplotr/; Spitzer et al., 2014).  

 

Table 2. Summary data by family. 

Family Order # Heat maps %Toothed %Lobed %Mucronate Highest scores 

Anacardiaceae Sapindales 101 16.8% 0% 13.9% Midsection 50%, secondary 
veins 

Annonaceae Magnoliales 164 0% 0% 0% Margin of basal 25%, 
margin of midsection 
50%, secondary veins, 
tertiary veins 

Apocynaceae Gentianales 206 0% 0% 13.6% Margin of basal 25%, 
primary-secondary, 

http://shiny.chemgrid.org/boxplotr/
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secondary veins, 
intersecondary veins 

Betulaceae Fagales 129 100% 0% 15.5% Margin of apical 25%, 
secondary veins, tooth 
apices 

Celastraceae Celastrales 121 62% 0% 5% Midsection 50%, primary-
secondary, secondary 
veins, intersecondary 
veins 

Ericaceae Ericales 161 41% 0% 41.2% Margin of basal 25%, tooth 
apices, tertiary veins 

Fabaceae Fabales 756 1.5% 2.1% 31.5% Midsection 50%, margin of 
apical 25%, margin of 
basal 25%, secondary 
veins, tertiary veins 

Fagaceae Fagales 135 56.3% 10.4% 0% Margin of midsection 50%, 
primary vein, tertiary 
veins 

Malvaceae Malvales 126 56.3% 7.1% 8.7% Midsection 50%, margin of 
midsection 50%, 
secondary veins, tertiary 
veins, proximal tooth 
flanks 

Myrtaceae Myrtales 77 14.3% 0% 0% Midsection 50%, in apical 
25%, primary-secondary, 
secondary veins, 
intersecondary veins 

Rosaceae Rosales 187 88.3% 2.1% 9.6% Margin of apical 25%, 
secondary veins, tooth 
apices 

Rubiaceae Gentianales 439 0% 0% 0% Margin of apical 25%, 
secondary veins 

Salicaceae Malpighiales 273 62.6% 0% 0% Midsection 50%, secondary 
veins 

Sapindaceae Sapindales 239 52.7% 30.1% 2.1% Margin of midsection 50%, 
margin of lobe, primary 
vein, secondary veins, 
tertiary veins 

Total, among-family means 3114 39.4% 3.7% 10.8%  
 

Multivariate analyses 

Multivariate analyses have been used by ecologists and paleobiologists for decades to 

understand complex, multivariate data (Foote, 1994, 1995; Kooyman et al., 2014, 2019; Krug & 

Patzkowsky, 2007; McCune & Grace, 2002; Roy & Foote, 1997; Stiles et al., 2020). Multivariate 

exploratory analyses are useful when searching for structure in a matrix, and for validating 

qualitative results. Cluster analysis, while most simplistic, results in a dendrogram that shows the 
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similarity between samples, in this case families, with more similar samples forming clusters 

close together compared to less similar samples. A distance measurement is applied to the data 

matrix, producing a sample-by-sample matrix with larger numbers representing higher 

dissimilarity between samples. Common distance measurements in paleobiological analyses are 

either Pythagorean, measuring the hypotenuse between two samples (e.g., Euclidean), or city-

block, measuring the legs of the triangle (e.g., Bray-Curtis; McCune and Grace, 2002). Samples 

that are most similar to each other are then combined (linkage strategies also vary; McCune and 

Grace, 2002), which will eventually produce a cluster dendrogram. Ordination analyses, 

specifically principal component and principal coordinate (PCA and PCoA, respectively) 

analyses produce two dimensional plots, unlike the one-dimensional cluster analyses. These 

analyses use eigenanalysis matrix algebra, producing as many components, or coordinates, as 

there are samples, that together explain all the variance and relationships in a matrix. Usually, the 

first two components are selected as x-y axes because they will contain the largest fraction of the 

variance. Eigenvector loadings are often plotted as vectors in the ordination as well to show the 

weightings and importance of a variable to an axis and its relationship with the samples 

(McCune & Grace, 2002). 

Principal component (PCA), principal coordinate (PCoA), and nonmetric 

multidimensional scaling (NMDS) plots, as well as unweighted pair group method with 

arithmetic averages (UPGMA) and cluster analyses, were generated from the median scores for 

the top-5 matrix and the mean scores for the top-1 matrix for each family (using Euclidean 

distance measures; other distance measures and linkage strategies gave very similar results). The 

median values for the top-5 matrix were used to reduce left skewing due to zero values for most 

scores. A separate PCA was conducted for the mean top-5 scores of genera with five or more 
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scored specimens each, to examine variation within families at the genus level. Statistical 

analyses were conducted using Paleontological Statistics Software (PAST; Hammer et al., 2001; 

available at https://www.nhm.uio.no/english/research/infrastructure/past). Minimal differences 

were usually observed between PCA, PCoA, and NMDS plots. I present PCA plots here, 

primarily because the method provides vector biplots through PAST that are easily interpreted. 

To minimize clutter, genera and leaf-architecture vectors that plotted near the origin were 

removed from PCA plots. 

Fossil applications 

 For informal demonstrative purposes, I searched manually for possible analogs of the 

most significant hotspot features in a few fossil leaves of the respective families. No published 

computer-vision algorithms can identify fossil leaves yet, and no computer-vision algorithms 

were used to find these examples. The examples were isolated by visually inspecting an open-

access image database of vetted fossil leaves identified at the family level (Wilf et al., 2021). 

 

  

https://www.nhm.uio.no/english/research/infrastructure/past
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Chapter 4  
 

Results 

 

My analyses found distinctive location signals for leaf hotspots in each family, summarized 

below by family and illustrated in the box plots (Fig. 2, see Data Availability) and selected 

annotated heat maps (Fig. 3; see Data Availability). Univariate and multivariate analyses show 

similar leaf architecture features as significant; the strongest signals come from locations on 

apical and basal margins, secondary veins, and tooth apices (Figs. 2-5). Comparable locations to 

those highlighted with the hotspots on the modern leaves can be identified in some fossil 

representatives from visual observations (Fig. 6). Scores are reported below as the within-family 

means for the top-1 (out of 1.0 possible) or top-5 (out of 5.0 possible) matrices. All summary 

statistics and top-1 box plots are archived (see Data Availability). 

  Anacardiaceae 

 The highest score for Anacardiaceae is hotspot squares on secondary veins, as seen in 

both top-5 (mean score of 2.2 out of 5.0; Figs. 2, 3; see Data Availability) and top-1 (mean score 

of 0.6 out of 1.0; see Data Availability) squares and exemplified in Anacardium and Buchanania 

(see Data Availability). In this family, scores are also high on the blade midsection (i.e., the 

remaining 50% of the lamina after excluding the basal and apical 25%, see Table 1; top-5 and 

top-1 squares) and basal 25% margin (top-5 of 1.2). Anacardiaceae are known to have unusual 

tertiary veins (Andrés-Hernández & Terrazas, 2009; Martínez-Millán & Cevallos-Ferriz, 2005; 

Mitchell & Daly, 2015; Wolfe & Wehr, 1987); however, the tertiary vein score for 

Anacardiaceae (top-5 and top-1) is average among the families sampled (Fig. 2, see Data  
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Figure 2. Box plots of top-5 scores by family for each of 21 leaf locations (Table 1). Thick 
bars, medians; box limits, 25th and 75th percentiles; whiskers, 1.5 times the interquartile 
range; dots, outliers; crosses, means. The sample size per family is five times the number of 
heat maps (Table 2). Box fills alternate white and gray for visual clarity only; no statistical 
differences are indicated by the fills. See Data Availability for top-1 box plots. 
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Availability). Some tertiary-vein signal is probably present in the hotspot squares that contain 

both secondary (or primary) and tertiary veins, which in the system are scored for the secondary 

(primary) vein (Table 1; see Methods). Only 16.8% of the Anacardiaceae leaves analyzed were 

toothed (Table 2). All tooth-location scores were low, even when analyzing only toothed leaves 

(see Data Availability). Across all 14 families, Anacardiaceae has the third-highest scores for 

both the hotspot squares in the midsection (top-5) and those on the secondary veins (top-5 and 

top-1), similar to Celastraceae and Myrtaceae for those locations. 

Annonaceae  

As a completely untoothed and unlobed family, Annonaceae scores are restricted to 

location and venation (Table 2). All Annonaceae leaves scored seem to have brochidodromous 

secondary veins. The highest scores within Annonaceae are for the basal margin (top-5 of 2.3; 

for example, Cyathostemma), midsection margin (top-1 of 0.4), and tertiary veins (top-5 of 1.2; 

top-1 of 0.4; Fig. 3). Although below-average in frequency, hotspots on secondary veins are 

always on secondaries that end in brochidodromous loops or on the loops themselves. Compared 

with other families, Annonaceae has the third-highest primary vein scores (top-1 of 0.2) and 

highest tertiary-vein score (top-1 of 0.4). 

Apocynaceae 

Apocynaceae, another completely untoothed and unlobed family, has its highest scores 

on the basal margin, secondary veins, and intersecondary veins (Fig. 3). The Apocynaceae 

location scores are for the basal 25% margin (top-5 of 1.1; top-1 of 0.7; see Baissea), 
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themidsection margin (top-5 of 1.3), and within the midsection (top-5 of 1.3). The highest score 

for Apocynaceae venation is for secondary veins (top-5 of 1.3). Compared with other families, 

Apocynaceae has the third-highest score for primary-secondary intersections (top-5 of 0.3; see 

Chilocarpus) and second-highest score for intersecondary veins (top-5 of 0.3; see Epigynum; 

highest is Myrtaceae; Figs. 2, 3). 

Betulaceae 

Betulaceae is the only family with 100% toothed and unlobed leaves in the dataset; the 

highest scores for the family are for leaf margin, secondary veins, and tooth apices (Fig. 3). 

Almost all the hotspot squares are on the leaf margins; the highest location scores for the family 

are on the apical 25% margin (top-5 of 2.0; top-1 of 0.5), followed by the midsection margin 

(top-5 of 2.0; top-1 of 0.3). The highest venation scores for Betulaceae are for secondary veins 

(top-5 of 2.8; top-1 of 0.7; see Betula and Fig. 3), corresponding to hotspots on both major and 

minor secondary veins. Betulaceae has very high scores for tooth apices (top-5 of 2.7; top-1 of 

0.6; Figs. 2, 3; e.g., Alnus; see Data Availability), almost always on teeth whose principal veins 

are secondary or minor secondary veins, rather than tertiary veins (Fig. 3). Paleobotanists have 

used Betulaceae teeth as a distinctive feature when identifying fossil leaves (Hickey and Wolfe, 

1975; Wolfe and Wehr, 1987). Betulaceae also has the highest score for all families in the 

midsection margin (top-5), apical margin 25% (top-5 and top-1), and secondary veins (top-1). 
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Figure 3. Selected examples of high-scoring features. Anacardiaceae. Secondary veins and 
secondary-tertiary junctions. Top, left to right: Anacardium humile (NCLC-W no. 12854), 
Buchanania arborescens (1758), Cotinus coggygria (4306). Bottom, left to right: Mauria 
heterophylla (4219), Metopium brownei (4221), Rhus diversiloba (12870). Annonaceae. 
Midsection margin, basal margin, brochidodromous secondary loops, tertiary loops: Malmea 
depressa (2885), Miliusa campanulata (2453), Miliusa indica (7854), Cyathostemma argenteum 
(15483), Monanthotaxis cauliflora (5443), Guatteria ovalifolia (9517), Desmopsis microcarpa 
(3849), Monanthotaxis trichocarpa (5450). Apocynaceae. Basal margin, primary-secondary 
intersection, primary-intersecondary intersection, secondary veins, intersecondary veins: 
Heterostemma cuspidatum (7433), Baissea axillaris (5108), Chilocarpus decipiens (2034), 
Melodinus gracilus (4824), Mascarenhasia lisianthiflora (5118), Melodinus vitiensis (6243), 
Tabernaemontana hirtula (10131), Epigynum miangayi (8495).  Betulaceae. Tooth apices, 
secondary veins: Alnus oregana (6710), Alnus trabeculosa (6718), Betula mandshurica (8521), 
Carpinus pubescens (8497), Carpinus carpinoides (8492), Betula lutea (11919). Celastraceae. 
Primary vein, primary-secondary intersection, primary-intersecondary intersection, secondary 



22 

veins: Celastrus articulatus (25), Celastrus articulatus (13531), Maytenus tikalensis (5941), 
Pterocelastrus rostratus (4962), Cheiloclinium gleasonianum (8252), Hippocratea andina 
(13608), Salacia laevigata (5960), Schaefferia argentinensis (6141). Ericaceae. Basal margin, 
teeth, tertiary veins: Arctostaphylos andersonii (1454), Elliottia bracteata (6888), Gaultheria 
miqueliana (545), Lyonia lucida (13034), Leucothoe axilllaris (13025), Vaccinium ciliatum 
(13112). Fabaceae. Apical margin, mucronate apex, secondary veins, tertiary veins: Acacia 
californica (10636), Bauhinia divaricata (30212), Crudia gabonensis (13371), Kunstleria 
forbesii (9886), Kunstleria ridleyi (9887), Mimosa glaucescens (6377). Fagaceae. Primary veins, 
tertiary veins, midsection margin, proximal tooth flanks: Castanea dentata (7101), Castanopsis 
cuspidata (190), Fagus lucida (8538), Quercus crassipes (14728), Quercus gambelii (7743), 
Quercus hui (10785), Quercus libani (10717), Quercus donarium (8549). Malvaceae. Secondary 
veins, minor secondary veins, intercoastal tertiary veins, exterior tertiary veins, tooth apices, 
tooth proximal flanks: Corchorus aestuans (1398), Pterocymbium tinctorium (8051), Microcos 
paniculata (11502), Luehea seemannii (3609), Commersonia fraseri (3662), Corchorus 
orinocensis (3598), Tilia mongolica (391), Tilia noziricola (8636). Myrtaceae. Primary-
secondary intersections, primary-intersecondary intersections, secondary veins, intramarginal 
secondary veins, and tertiary veins: Eucalyptus sclerophylla (12430), Marlierea montana (3527), 
Myrcia affinis (3521), Callistemon lanceolatus (1717), Calycorectes sellowianus (3509), 
Metrosideros excelsa (3531), Myrtus seriocalyx (3555), Calyptranthes eugenioides (3511). 
Rosaceae. Secondary veins, minor secondary veins, tooth apices: Amelanchier candensis (1098), 
Exochorda racemosa (1408), Oemleria cerasiformis (1008), Rhodotypos scandens (12645), 
Sorbus japonica (8671), Crataegus pubescens (11981), Rosa blanda (12002). Rubiaceae. Apical 
margin and secondary veins in the midsection: Alibertia nitidula (10178), Neobertiera gracilis 
(9382), Tricalysia acocantheroides (5314), Chomelia filipes (5655), Faramea parvibractea 
(13882), Psychotria longipies (14056). Salicaceae. Secondary vein and midsection: Abatia 
stellata (1702), Azara dentata (7953), Salix acutifolia (18102), Salix paradoxa (18143), Salix 
pseudolapponum (10316), Samyda yucatanensis (7030). Sapindaceae. Lobes and lobe margin, 
primary veins, secondary veins, tertiary veins, tooth apex, tooth proximal flank: Acer aff. (8604), 
Acer caesium (8580), Acer barbatum (480), Pancovia harmsiana (4897), Acer argutum (8578), 
Acer sieboldianum (1220), Diploglottis cunninghamii (7084). Noise examples. Petiole insertion, 
squares off leaf, damaged regions: Malus toringo (Rosaceae, 8655), Prunus americana 
(Rosaceae, 7726), Populus brandegeei (Salicaceae, 656), Samyda mexicana (Salicaceae, 2814), 
Albizia saponaria (Fabaceae, 6366), Glyphaea grewiodies (Malvaceae, 4596).  
 

Celastraceae 

Celastraceae has the highest scores in the midsection, primary-secondary junctions, and 

secondary veins but has low tooth scores (Fig. 3; see Data Availability). The highest location 

scores within Celastraceae were on the midsection (top-5 of 2.4; top-1 of 0.6) and the basal 25% 
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margin (top-5 of 1.2). Secondary veins generated the highest score for venation (top-5 of 1.7; 

top-1 of 0.4). Although the Celastraceae image set has one of the highest percentages of toothed 

leaves (62 %; Table 2), all tooth scores are very low, similar to Salicaceae (see Data 

Availability). Compared with other families, Celastraceae has the highest score for hotspot 

squares on primary-secondary vein junctions (top-5 of 0.5; top-1 of 0.2; Fig. 3). Primary-

intersecondary junctions constitute a large portion of the primary-secondary junction score for 

Celastraceae. However, the intersecondary vein score (top-5 and top-1), representing areas with 

intersecondaries not at junctions, is low. This could mean that the junction characteristics (such 

as angle and gauge; e.g., Hippocratea) are more important for identifying Celastraceae compared 

with the intersecondary or primary veins themselves. Compared with other families, Celastraceae 

also has the highest hotspot score for the midsection of the blade (top-5 and top-1) and the third-

highest score for primary veins (top-5 of 0.5; highest is for Fagaceae and Sapindaceae). 

Ericaceae 

Ericaceae is a majority untoothed family (41.0% toothed) with teeth small to barely 

noticeable when present (Table 2). The highest Ericaceae scores are on the basal margin and 

tooth apices, for toothed leaves (Fig. 3). Most Ericaceae hotspot squares were found on the basal 

25% margin (top-5 of 1.0; top-1 of 0.8; see Elliottia) and apical 25% margin (top-5 of 1.5; Fig. 

3). The tertiary vein score is high (top-5 of 1.7), along with tooth apices (top-5 of 0.6). Hickey 

and Wolfe (1975) noted reticulodromous tertiary veins as distinctive in Ericaceae. Top-1 scores 

have no significant venation or tooth scores. Although most leaves in the family do not have 

teeth, the toothed leaves contain high frequencies of squares on tooth apices (i.e., Vaccinium). 
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Ericaceae has the highest score for the basal 25% margin (top-1) and tertiary veins (top-5) for all 

families. 

Fabaceae 

Fabaceae has high scores on the blade midsection and apical margin along with tertiary 

veins (Fig. 3). Fabaceae is one of the only families with a significant percentage of mucronate 

apices in the dataset, 30.5% (Table 2). The sample only includes a handful of toothed or lobed 

(mostly bilobed Bauhinia spp.) leaves. Hotspot squares are often found on the basal 25% margin 

(top-5 of 1.3), within the midsection (top-5 of 1.3), and the apical 25% margin (top-5 of 1.2; top-

1 of 0.3; Figs. 2, 3; see Pterocarpus; see Data Availability). For venation, scores for tertiary 

veins are high (top-5 of 1.5; top-1 of 0.4; Figs. 2, 3). The mucronate apex score is low in this 

family (top-5 of 0.2) due to the high percentage of leaves lacking mucros, but the feature is 

probably useful for identifying leaves when it is present. Fabaceae has the third-highest score for 

the basal 25% margin (top-5) and tertiary veins (top-5). 

Fagaceae 

Fagaceae has the highest scores on the midsection margin, primary vein, and tertiary 

veins (Fig. 3). The family has the second-highest percentage of lobed leaves at 10.4%, and 

55.6% of the scored cleared leaves are toothed (Table 2). For location, the highest scores for 

Fagaceae are for hotspot squares in the midsection of the leaf (top-5 of 1.5) and midsection 

margin (top-5 of 1.5; top-1 of 0.5). For venation, the highest scores are on primary veins (top-5 

of 1.0; Fig. 3; see Castanopsis, Fagus, and Quercus) and tertiary veins (top-1 of 0.4; Fig. 3). All 
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tooth scores are low because many leaves are untoothed, but the highest tooth score is tooth 

proximal flanks (top-5 of 0.3; top-5 of 0.5 for only toothed leaves; see Data Availability). 

Fagaceae has the highest score for the primary veins; however, the primary-secondary junction 

score is low (Fig. 2; see Data Availability). 

Malvaceae 

 A family with well-described leaf architecture (Carvalho et al., 2011; Hickey, 1997; 

Hickey & Wolfe, 1975), approximately half the Malvaceae heat maps are of toothed leaves 

(Table 2). The highest Malvaceae scores are for squares on the midsection margin (top-5 of 1.5), 

in the midsection (top-1 of 0.3), on secondary veins (top-5 of 1.7; top-1 of 0.4), on tertiary veins 

(top-5 of 1.6; top-1 of 0.3), and on proximal tooth flanks (top-5 of 0.5; Figs. 2, 3; e.g., Tilia). 

Hotspot squares are on both secondary and agrophic minor secondary veins with high frequency 

(Fig. 3). Tertiary veins have strong signals on exterior (often tooth principal veins) and 

intercostal tertiary veins (those veins have a relatively consistent angle and gauge). Although the 

highest tooth score in Malvaceae is for the tooth proximal flanks (see Data Availability), hotspot 

squares are also on the tooth apex, and the overall tooth score is high in Malvaceae (mean score 

of 1.0 in top-5 squares and mean score of 1.7 for top-5 squares only on toothed leaves; see Data 

Availability). Scores are evenly distributed on teeth with secondary and tertiary principal veins. 

Across families, Malvaceae has the highest score for proximal tooth flanks (top-5 of 0.5; top-5 of 

0.8 for only Malvaceae toothed leaves; see Data Availability), and the second-highest score for 

tertiary veins (top-5 of 1.6; highest is Ericaceae). 
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Myrtaceae  

Myrtaceae leaves are completely untoothed and unlobed (Table 2). High scores in the 

family are for hotspot squares within the midsection, primary-secondary junctions, secondary 

veins, and intersecondary veins (Fig. 3). The highest Myrtaceae location scores are in the 

midsection of the blade (top-5 of 2.3; top-1 of 0.4). Although low compared with the midsection 

scores, the second-highest score is for the apical 25% of the leaf (top-5 of 0.8; top-1 of 0.2). For 

venation, Myrtaceae has high scores on secondary veins (top-5 of 2.9; top-1 of 0.7; Fig. 3), 

intersecondary veins (top-5 of 0.6; top-1 of 0.1; see Calyptranthes and Fig. 3), and primary-

secondary junctions (top-5 of 0.4; Fig. 3). Similar to Celastraceae, many of these are primary-

intersecondary junctions (Fig. 3). Hotspots are often on thin-gauged secondary and 

intersecondary veins that join a well-defined intramarginal vein or on the intramarginal vein 

itself (intramarginal veins are scored as secondary veins; Table 1; Fig. 3). The presence of a 

well-expressed intramarginal vein in many Myrtaceae is well known and has long been used by 

paleobotanists to help identify fossil myrtaceous leaves (Gandolfo et al., 2011; MacGinitie, 

1969; Manchester et al., 1998; Tarran et al., 2018). Compared with other families studied, 

Myrtaceae has the highest scores for the apical 25% of the blade (top-5), secondary veins (top-5), 

and intersecondary veins (top-5 and top-1); the second-highest score for the blade midsection 

(top-5 and top-1; highest is Celastraceae); and the third-highest for primary-secondary 

intersections (top-5). 
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Rosaceae  

Rosaceae scores are highest on secondary veins and tooth apices (Fig. 3). Rosaceae has 

the second-highest percentage (highest is Betulaceae) of toothed leaves, 88.3%, and the samples 

are largely unlobed (Table 2). The hotspots are most often on the margin of the leaf, throughout 

the margin of the basal 25% (top-5 of 1.3; top-1 of 0.4), the margin of the midsection (top-5 of 

1.4), and the margin of the apical 25% (top-5 of 1.4). It is likely that the basal margin 25% score 

for Rosaceae results from the high score for petiole insertion (top-5 of 0.7; top-1 of 0.2), which is 

a noise character (see Methods; Table 1; Fig. 3). For venation, Rosaceae has high scores for 

secondary (top-5 of 1.7; top-1 of 0.3) and tertiary veins (top-5 of 1.4; Fig. 3), as seen in Prunus. 

Similar to Betulaceae and toothed Ericaceae, Rosaceae also has very high scores for tooth apices 

(top-5 of 1.8; top-1 of 0.3; Fig. 3), and notably so in Crataegus. However, the SIFT method was 

able to discriminate between those families with high accuracy (Wilf et al. 2016), suggesting as-

yet-undescribed differences at the family level in tooth-apex morphology. Paleobotanists have 

used the rosid tooth type as a feature to identify fossil rosaceous leaves (DeVore et al., 2004; 

Hickey & Wolfe, 1975; Kellner et al., 2012; Wolfe & Wehr, 1987). The majority of the hotspots 

on tooth apices have secondary or minor secondary principal veins, but there are still some on 

teeth with tertiary principal veins. Rosaceae scores differ from Betulaceae in the high score of 

the basal margin and (artifactual) petiole insertion and a higher frequency of hotspots within the 

leaf interior on secondary and tertiary veins. Compared with other families, Rosaceae has the 

second-highest scores for the basal 25% margin (top-5; highest is Annonaceae) and tooth apices 

(top-5 and top-1; highest is Betulaceae) and the third-highest score for the apical 25% margin 

(top-5). 
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Rubiaceae  

Rubiaceae, a completely untoothed and unlobed family, has high scores for hotspot 

squares on the apical margin and secondary veins (Fig. 3). Rubiaceae species have diagnostic 

interpetiolar stipules that have long been used for field identification (Croat, 1978; Gentry, 1993; 

Simpson, 2010). Unfortunately, the stipules are not preserved in most fossils (but see Roth and 

Dilcher, 1979), leaving Rubiaceae with a depauperate macrofossil record. The stipules also are 

not present in the cleared-leaf images used here (or in most or all source slides). The highest 

hotspot scores in the family are on secondary veins (top-5 of 1.6), within the midsection (top-5 of 

1.5), and apical 25% margin (top-5 of 1.2; top-1 of 0.7; see Tricalysia and Figs. 2, 3). Compared 

with other families, Rubiaceae has the highest score for the apical 25% margin (top-1). 

Salicaceae  

Salicaceae has unexpectedly low scores for tooth characters (Table 2; see Data 

Availability), despite over 60% of the heat maps being of toothed leaves, no preservation 

problems observed with the teeth in the images, and the well-known association of the family 

with the distinctive salicoid tooth type (Boucher et al., 2003; Hickey & Wolfe, 1975; Manchester 

et al., 1986, 2006). The highest location score for Salicaceae is within the blade midsection (top-

5 of 1.4; top-1 of 0.4), followed by the basal margin 25% (top-5 of 1.2) and apical margin 25% 

(top-5 of 1.2). Secondary veins have the highest venation scores for Salicaceae (top-5 of 1.7; top-

1 of 0.5; Fig. 3; see Salix). Frequently, the hotspot squares partially touch the secondary veins or 

secondary-tertiary junctions (scored as secondary veins; see Methods and Table 1; Fig. 3). 
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Across all families, Salicaceae has the second-highest score for the blade midsection (top-1; 

highest is Celastraceae). 

Sapindaceae 

Acer heat maps, comprising more than a third of the Sapindaceae sample, display a 

different pattern from other Sapindaceae leaves, mostly emphasizing the much higher proportion 

of lobed leaves in Acer compared with other Sapindaceae as well as Acer tooth features (Table 3 

and Data Availability). In Acer, the highest location scores are for hotspot squares on the lobe 

margin and midsection margin. For non-Acer Sapindaceae, the highest leaf location scores are 

for the midsection, the midsection margin (like Acer), and the margin of the apical 25%. For 

Acer venation, primary, secondary, and tertiary vein scores are high, and these are often lobe-

forming veins (Fig. 3). Only the secondary vein score is high for non-Acer Sapindaceae venation. 

The Acer score for tooth proximal flanks is high, and the overall tooth score is more than double 

that of non-Acer taxa; however, the scores are approximately equal for Acer and non-Acer heat 

maps for tooth apices. Overall, Sapindaceae (incl. Acer) has the highest score on the lobe margin 

and the second-highest score for the primary veins (Table 3; highest is Fagaceae). 

 

Table 3. Selected top-5 means comparisons for Acer and  
non-Acer Sapindaceae. 

Feature Acer1 Non-Acer1 All Sapindaceae1 
Midsection 50% 0.7 1.2 1.0 
Margin of midsection 50% 2.0 0.9 1.4 
Margin of apical 50% 0.8 1.4 1.2 
Margin of lobe 2.0 0.02 0.9 
Primary vein 0.8 0.6 0.7 
Secondary vein 1.2 1.5 1.4 
Tertiary vein 1.4 1.0 1.2 
Tooth apex 0.4 0.2 0.3 



30 

 

1 Acer (n=107), non-Acer (n=132), all Sapindaceae (n=239) 

 

Noise features 

The noise features (hotspots on the digitally clipped petiole, off the leaf, or on a damaged 

region) did not seem to have a significant impact on the results, attesting to low noise in the 

system overall as found in the earlier experiments (Wilf et al. 2016). Rosaceae is the only family 

that has a high score for the petiole insertion (top-5 of 0.7; top-1 of 0.2; Fig. 3), and Salicaceae is 

the only family with a high score for hotspot squares off the leaf (top-5 of 0.7; Fig. 3). The score 

for hotspots on damaged regions of the leaf was low for all families, ranging from 0.05 

(Fagaceae) to 0.9 (Rosaceae) for top-5 squares. 

Multivariate analyses  

The multivariate analyses (Figs. 4, 5) show robust signals from secondary and tertiary veins, 

several margin features, and tooth apices, generally coinciding with the univariate results just 

described. Although only a few families sampled here belong in the same order, I note that there 

is minimal grouping of families due to ordinal membership in the PCA or clusters. However, 

Anacardiaceae and Sapindaceae (Sapindales) cluster together in the top-1 PCA (not the cluster 

analysis), most likely due to the high scores for secondary veins in both families. Wilf et al. 

(2016) found strong identification signals at the ordinal level for cleared leaves, but that work 

used more families per order than I could examine here. Studies of pteridophytes using 

Tooth proximal flank 0.6 0.1 0.3 
Total tooth score 1.3 0.6 0.9 
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traditional leaf architecture characters have shown phylogenetic signals at the ordinal level or 

higher in PCA and cluster analyses (Tan & Buot, 2019).  

Top-1 PCA.   

For the top-1 PCA (Fig. 4A), families scoring high on axis 1 have high scores for secondary 

veins, as seen in Myrtaceae and Celastraceae, and the secondary vein vector has significant 

magnitude and almost parallels axis 1. Families scoring in the negative region of axis 1 have 

high scores for the basal margin of the leaf, seen in Ericaceae and Apocynaceae. Families 

scoring high on axis 2 have high scores for the apical margin, with positive scores for 

Betulaceae, Rubiaceae, and Rosaceae. Families scoring in the negative region of axis 2 have high 

scores for the blade midsection, as seen in Celastraceae and Myrtaceae. Ericaceae and 

Apocynaceae plot closely together due to the high frequency of hotspot squares on the basal 25% 

margin. Most families plot together in the bottom right corner of Figure 4A, i.e., with high PC1 

and low PC2 scores, due to high scores for secondary veins and the blade midsections. 

Annonaceae and Rosaceae plot as intermediaries, having high scores for basal margin, 

midsection margin, and secondary veins. Rubiaceae and Betulaceae are outliers due to their high 

scores on the apical margin and, for Betulaceae only, tooth apices. 

Top-5 PCA.  

For the top-5 PCA (Fig. 4B), families scoring high on axis 1 all have high scores for tooth apices 

and hotspot squares on the midsection and apical 25% margin, such as Betulaceae, Malvaceae, 

and Rosaceae. The vectors for these leaf architecture features indicate that they are influential on 
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axis 1. Families scoring low on axis 1 have high scores for squares within the midsection of the 

blade, including Myrtaceae and Celastraceae. Families scoring high on axis 2, such as 

Myrtaceae, Celastraceae, and Anacardiaceae, have high scores for secondary veins and the blade 

midsection. Families plotting in the negative region of axis 2 have high scores for the basal 25% 

margin and tertiary veins, such as Ericaceae, Fabaceae, and Annonaceae. Most families plot 

close to the origin, including Fagaceae, Salicaceae, Apocynaceae, and Sapindaceae. Families 

with very high scores for secondary or tertiary veins are outliers, such as Rosaceae, Betulaceae, 

Myrtaceae, and Celastraceae. Although the top-1 PCA (Fig. 4A) is driven strongly by margin 

and location vectors, the top-5 PCA (Fig. 4B) is driven by margin, tooth, and venation vectors 

(specifically secondary and tertiary veins, midsection, basal, apex margin, in midsection, and 

tooth apex). In both the top-1 and top-5 PCA, Myrtaceae, Rosaceae, Betulaceae, Ericaceae, and 

Celastraceae plot near the extremes, but Apocynaceae and Rubiaceae are also extremes in top-1 

PCA. 

Top-5 PCA for genera.  

The PCA of top-5 within-genera averages (Fig. 4C) has a similar structure to the corresponding 

family PCA (Fig. 4B), and the vectors conserve a near-identical direction to their families. The 

genera of six of the fourteen families — Anacardiaceae, Betulaceae, Celastraceae, Ericaceae, 

Myrtaceae, and Rosaceae — respectively plot closely together in easily-defined ordination 

spaces, outlined in dashed lines (Fig. 4C). Fabaceae, Annonaceae, Apocynaceae, and Rubiaceae 

have overlapping and similar morphospaces that cannot be easily defined. Other families plot 

throughout the morphospace with no clear pattern, such as Salicaceae, Fagaceae, and Malvaceae.  
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Figure 4. Principal component analyses (PCA) of top-1 and top-5 results, with vectors shown for 
influential leaf locations (Table 1) and the percentage of variance represented shown on the 
respective axis. Selected image patches are included as exemplars. A. Top-1 analysis for families 
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(means), with vectors longer than 0.08 shown. Exemplars, clockwise from top center: Tricalysia 
acocantheroides (Rubiaceae, NCLC-W no. 5314), Alnus sieboldiana (Betulaceae, 980), Myrtus 
seriocalyx (Myrtaceae, 3555), Elliottia bracteata (Ericaceae, 6888). B. Top-5 analysis for 
families (medians), all vectors retained (some are identical, overlapping, or very short). 
Exemplars, clockwise from top left: Calycorectes sellowianus (Myrtaceae, 3509), Alnus oregana 
(Betulaceae, 6710), Lyonia lucida (Ericaceae, 13034), Cyathostemma argenteum (Annonaceae, 
15483).  C. Top-5 analysis of genera with at least five heat maps each (means), genera less than 
0.3 units from origin and vectors shorter than 0.25 units removed. Dashed lines, families with 
discrete spatial occupation as labeled: Anacardiaceae, Betulaceae, Celastraceae, Ericaceae, 
Myrtaceae, Rosaceae. Exemplars, left to right: Maytenus tikalensis (Celastraceae, 5941), Baissea 
axillaris (Apocynaceae, 5108), Rosa blanda (Rosaceae, 12002), Carpinus carpinoides 
(Betulaceae, 8492). 

Cluster analysis.  

The top-1 cluster dendrogram (Fig. 5) follows a similar pattern to the top-1 PCA (Fig. 4A), in 

that Rubiaceae and Betulaceae are outliers and Ericaceae, Apocynaceae, and Rosaceae cluster 

together. Ericaceae, Apocynaceae, and Rosaceae all have high scores for the basal 25% margin, 

whereas Betulaceae and Rubiaceae have high apical 25% margin scores. All other families form 

paired clusters. One contains families with high scores for secondary veins (Myrtaceae, 

Celastraceae, Anacardiaceae, Salicaceae), and the other has high scores for tertiary veins 

(Fagaceae, Annonaceae, Sapindaceae, Malvaceae). 
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Figure 5. UPGMA cluster analysis of the mean top-1 
family scores using Euclidean distances (y-axis). 
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Chapter 5  
 

Discussion 

 

These results show new possibilities for quantitatively interpreting computer vision signals into 

human-friendly botanical language by mapping, tabulating, and analyzing the regions of highest 

diagnostic value. Although I undertook a manual approach to develop this pilot study, part of the 

work involved can be automated, such as selecting regions with the most saturated colors. My 

results demonstrate that computer-vision heat maps that may, at first, appear to be noise, in fact 

provide a new pathway to uncover diagnostic features that were previously unnoticed in the 

complexity of angiosperm leaf-architecture. Although I do not attempt here to define new 

botanical characters, the work presents new leads for families with few to no established leaf-

architectural features and enhances visual “gestalt” learning of leaf architecture (Fig. 3; see Data 

Availability). The heat map analyses highlight diagnostic information in several leaf structures, 

including teeth (Rosaceae, Betulaceae, Ericaceae), marginal features of untoothed leaves 

(Rubiaceae, Annonaceae, Apocynaceae), and secondary venation (Myrtaceae, Anacardiaceae, 

Celastraceae, Salicaceae). Some of the highlighted regions appear to correspond to characters 

used by botanists and paleobotanists or to qualitative observations from the original publication 

of the heat maps (Wilf et al., 2016). Many others appear to be new observations for the families 

(such as the apical margin in Rubiaceae). Conversely, other traditional leaf architecture 

characters (such as the salicoid teeth of Salicaceae; Hickey and Wolfe, 1975) did not correspond 

to significant signals in the analyses. 
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For families with few established leaf-architecture characters, such as Celastraceae 

(Bacon et al., 2016), Rubiaceae (Graham, 2009), Apocynaceae (Del Rio et al., 2020), 

Annonaceae (Pirie & Doyle, 2012), and Ericaceae (Jordan et al., 2010), the highlighted features 

(Table 2) can be viewed as new leads in identifying their isolated fossil-leaf representatives. In 

Celastraceae, features of interest include the primary-secondary and primary-intersecondary 

junctions, including the relative gauge and angle of junctions. Heat-map signals in Annonaceae 

include the angle, gauge, and distance from the margin of the secondary and tertiary vein loops. I 

have also extracted new information in families with well-understood leaf architecture, such as 

Malvaceae, Salicaceae, and Fagaceae. Malvaceae signals include intercostal tertiary vein gauge 

and angles, agrophic secondary vein patterns, and tooth proximal flanks. In Salicaceae, features 

of interest include secondary and tertiary vein gauge and secondary-tertiary junctions and 

ramifications. There are also robust signals in the Fagaceae primary vein, Fabaceae higher order 

venation, and tooth apices in Betulaceae, Rosaceae, Ericaceae. 

Distinctive signals are present for leaf margins in most families, in both toothed and 

untoothed leaves. In many highly toothed families, tooth frequency increases toward the apex of 

the blade. This probably explains the higher frequency of hotspot squares on the apical margin 

relative to the basal margin in Ericaceae, Betulaceae, and Rosaceae. In Sapindaceae, and to a 

lesser extent in Malvaceae, hotspots on teeth are not focused on a specific region (such as tooth 

apices in Rosaceae), producing low mean values across the various tooth scores (Table 3 and see 

Data Availability). The overall combined score for hotspots on teeth, however, is not low for 

Sapindaceae and Malvaceae, indicating that the whole tooth structure is important for family-

level identification (see Data Availability), thus resonating with traditional analyses (e.g., Hickey 

and Wolfe, 1975). For the untoothed families, I suspect that as-yet not understood marginal 
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microcurvatures of untoothed families in Rubiaceae, Apocynaceae, Ericaceae, and Annonaceae 

are driving the high frequencies of hotspots on the margins of the blade. The strong signals for 

leaf margins in untoothed leaves emphasize their poorly understood but clearly significant 

diagnostic value, which has been generally overlooked compared with the better-understood 

margins of toothed leaves. 

Some of the features identified in this study correspond to qualitative observations noted 

in the original publication of the heat maps (Wilf et al., 2016). The importance of Fagaceae 

primary veins, Ericaceae teeth, Rosaceae tooth apices, Rubiaceae and Fabaceae apical margins, 

Annonaceae medial margin, secondary and intersecondary veins in Apocynaceae, and secondary 

veins in Betulaceae were all noted from holistic examination in the original study (Wilf et al., 

2016), and my quantitative scoring affirms those observations. High frequencies of hotspot 

squares on Salicaceae and Fagaceae tooth flanks, intersecondary veins in Betulaceae, and tertiary 

veins in Anacardiaceae were also noted qualitatively by Wilf et al. (2016) but did not score 

highly here. However, the qualitative observations by Wilf et al. (2016) were based on visual 

inspection of the complete heat maps involving hundreds of sample regions, not through 

standardized scoring of the filtered hottest spots as done here. 

More broadly, some leaf-architecture characters that have been used by botanists to 

identify fossil leaves for decades seem to be echoed in the heat maps, when those features are of 

similar scale to the small sample squares. The systematic value of tooth and tooth-apex fine 

architecture is long known (Hickey and Wolfe, 1975). Among families studied here, Betulaceae, 

Rosaceae, and Malvaceae teeth (Carvalho et al., 2011; DeVore & Pigg, 2007; Hickey & Wolfe, 

1975; Wolfe & Wehr, 1987), along with the Myrtaceae intramarginal vein (Gandolfo et al., 2011; 

MacGinitie, 1969), all have well-known characters. For example, Carvalho et al. (2011) 
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discussed the malvoid tooth type (Hickey & Wolfe, 1975), secondary and tertiary principal veins, 

and agrophic-vein branching patterns that are diagnostic to Malvaceae, all of which are echoed in 

the heat maps. The heat maps cannot respond to some of the holistic leaf architecture characters 

used to identify fossil Malvaceae leaves such as actinodromous primary venation (Carvalho et 

al., 2011; Hickey, 1997; Hickey & Wolfe, 1975) because those features are much larger than the 

sampling points used in the SIFT algorithm. In Salicaceae, our results indicate that previously 

unknown features may have higher diagnostic value than the salicoid tooth type (Hickey and 

Wolfe, 1975; Boucher et al., 2003), although that tooth feature clearly remains useful for 

identification. Additionally, families with well-defined ordination space for their genera (Fig. 

4C) — such as Anacardiaceae, Betulaceae, Rosaceae, Ericaceae, Celastraceae, and Myrtaceae — 

could be ripe targets for further leaf architecture and computer vision studies. Deep learning 

algorithms (Goh et al., 2021; LeCun et al., 2015; Serre, 2019; Voss et al., 2021; Yosinski et al., 

2015) will presumably be responsive to diagnostic regions that are larger than the small sample 

areas used here, including traditional whole-leaf features.Computer vision interpretability is a 

new and burgeoning field (Linsley et al., 2021; Olah et al., 2018; Voss et al., 2021) that, coupled 

with the mass digitization of herbaria and fossil plant collections, seems certain to further assist 

botanists and paleobotanists in the identification of leaves, both fossil and extant (Bakker et al., 

2020; Beaman & Cellinese, 2012; Bebber et al., 2010; Belhumeur et al., 2008; Hedrick et al., 

2020; Mata-Montero & Carranza-Rojas, 2016; Page et al., 2015; Soltis et al., 2020).   

     Many hotspot regions that had high scores in the system are similar to those seen in fossil 

leaves from the respective families (Fig. 6), showing the potential for direct applications to the 

fossil records of the respective families. As seen in Figure 6, most of the features have a high 

likelihood of preservation in the fossil record. Taken together, my results show that coupling 
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traditional leaf-architecture knowledge with artificial intelligence will lead to improved 

identification and systematic understanding of modern and fossil leaves. 
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Figure 6. Potential fossil analogs of selected heat map features. Fossils at right were manually 
marked, based on visual inspection, with unfilled squares to represent potential regions of 
similarity to computer-vision hotspot locations on cleared leaves from the same family shown at 
left. All fossil images are from an open-access image collection organized by Wilf et al. (2021). 
Anacardiaceae. Hotspots on secondary veins and secondary-tertiary junctions. Left to right: 
Astronium graveolens (NCLC-W no. 8535), Ozoroa obovata (10067), Anacardiaceae sp. TY203 
(Laguna del Hunco, Chubut, Argentina, Eocene, LH13-0303b (MPEF-Pb), Rhus malloryi 
(Republic Flora, Washington State, Eocene, DMNH 25283). Betulaceae. Tooth apices: Alnus 
oregana (6710), Alnus sieboldiana (980), Betula leopoldae (Republic Flora, DMNH [Stonerose] 
E155), Paracarpinus fraterna (Florissant Fossil Beds, Colorado, Eocene, UCMP 3614). 
Fabaceae. Secondary veins and tertiary veins: Crudia gabonensis (13371), Kunstleria ridleyi 
(9887), Fabaceae sp. (Laguna del Hunco, LH13-1173 (MPEF-Pb)), Fabaceae sp. CJ1 (Cerrejón 
Coal Mine, Guajíra, Colombia, Paleocene, SGC-ICP-10129). Fagaceae. Primary veins, tertiary 
veins, and midsection margin: Castanea dentata (7101), Quercus donarium (8549), 
Castaneophyllum patagonicum (Laguna del Hunco, MPEF-Pb 8274), Fagopsis longifolia 
(Florissant Fossil Beds, USNM 332356). Malvaceae. Secondary veins, minor secondary veins, 
intercoastal tertiary veins, exterior tertiary veins, tooth apices, and proximal tooth flanks: 
Microcos paniculata (11502), Tilia mongolica (391), Malvaciphyllum macondicus (Cerrejón 
Coal Mine, SGC-ICP 1075), Tilia johnsoni (Republic, DMNH 18384). Myrtaceae. Primary-
secondary intersections, primary-intersecondary intersections, secondary veins, intramarginal 
secondary veins, intersecondary veins: Myrcia affinis (3521), Calycorectes sellowianus (3509), 
Eucalyptus frenguelliana (Laguna del Hunco, MPEF-Pb 2329), Myrtaceae sp. TY041 (Laguna 
del Hunco, MPEF-Pb 976a). Rosaceae. Tooth apices, secondary veins, tertiary veins: Sorbus 
japonica (8671), Crataegus pubescens (11981), Prunus gracilis (Florissant Fossil Beds, UCMP 
3644), Crataegus sp. (Florissant, FLFO 006827A). Salicaceae. Secondary veins and secondary-
tertiary junctions: Abatia stellata (7021), Azara dentata (7953), Populus wilmattae (Bonanza 
site, Green River Formation, Utah, Eocene, DMNH 9763), Populus crassa (Florissant Fossil 
Beds, FLFO 003329A). Sapindaceae. Secondary veins, tertiary veins, teeth: Pancovia 
harmsiana (4897), Acer argutum (8578), Koelreuteria allenii (Florissant Fossil Beds, FLFO 
006223B), Acer florissantii (Florissant Fossil Beds, UCMP 3831). Repository abbreviations: 
DMNH, Denver Museum of Nature & Science; FLFO, Florissant Fossil Beds National 
Monument, Florissant (Colorado); MPEF-Pb, Museo Paleontológico Egidio Feruglio, Trelew 
(Argentina); SGC-ICP, Colombian Geological Survey and Colombian Petroleum Institute, 
Bogotá; UCMP, University of California Museum of Paleontology, Berkeley; USNM, National 
Museum of Natural History, Smithsonian Institution, Washington D.C.
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Chapter 6  
 

Conclusions 

 

Visual outputs from machine-learning experiments provide a novel approach for improving 

understanding of diagnostic features in plant morphology. Here, I show that the interpretation 

and quantitative analysis of computer-vision heat maps can detect previously unknown leaf-

architecture signals that could contribute to the development of new taxonomic characters. This 

contribution is the first to quantitively back-translate heat-map visualizations to understand and 

uncover novel leaf architecture signals for family-level leaf identification and one of the first to 

do so for any type of computer-vision heat maps. The scoring system yielded distinctive score 

combinations for each family. Diagnostic regions occurred on, as examples, secondary veins in 

most families; tooth apices in Rosaceae, Ericaceae, and Betulaceae; tooth flanks and intercostal 

tertiary veins in Malvaceae; primary-secondary junctions in Celastraceae, Myrtaceae, and 

Apocynaceae; intersecondary veins in Apocynaceae; and marginal features of untoothed leaves 

in Rubiaceae, Annonaceae, Fabaceae, Apocynaceae and Ericaceae. 

Some of the highlighted features are novel, whereas others, such as the Myrtaceae 

intramarginal vein and Rosaceae teeth, echo characters that have been used by botanists and 

paleobotanists for decades. Many, but not all, of the findings quantitatively confirm the initial 

qualitative observations in the original publication of the heat maps (Wilf et al., 2016). The 

robust signals from marginal microcurvature in untoothed leaves are a new and promising 

discovery. Multivariate analyses show high family distinctiveness in diagnostic character 

combinations. Searching for computer-vision signals from extant leaves in fossil leaves has 
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potential to assist in the identification of millions of unidentified fossil leaves, pending the 

development of dedicated fossil-leaf applications. Machine-learning visualizations can be 

combined with traditional leaf architecture to provide the opportunity for botanists to learn from 

computer vision algorithms, increasing visual “gestalt” learning and uncovering novel botanical 

characters that have been hiding in plain sight. 
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Chapter 7  

 
Reflections 

I always knew I wanted to be a paleontologist but my time at Penn State and my senior thesis work 

changed my trajectory and paleontological career interests. I was always a dinosaur kid growing up and 

had a steadfast resolve to work in a museum studying dinosaurs and vertebrate paleontology but when I 

arrived at PSU, there were no vertebrate paleontologists to work with. I joined the PSU Paleobotany lab 

with Dr. Peter Wilf my first year thinking that whatever skills I learn will be transferable to vertebrate 

paleontology. Dr. Wilf saw my passion for paleontology and helped me start my independent project, 

which has led to this thesis. Through this project, and additional paleobotanical projects, I fully immersed 

myself in paleobotany and the paleobotanical community. After almost four years in the lab, I now plan to 

pursue a Ph.D. studying paleobotany and can easily see myself researching plant evolution and their fossil 

record for a career.  

Even without the giant asterisk that is COVID-19, my undergraduate experience has been quite 

non-traditional. I came to Penn State in June 2018, before I even graduated high school, for the 

Millennium Scholars Program (MSP) summer bridge. Coming into fall 2018, I already knew my way 

around campus, knew over 40 students at PSU, my advisors, my course trajectory, and how to join a lab. 

It was because of MSP that I joined a research lab my first year and started my thesis work as early as 

possible. I would not be at Penn State without MSP and I couldn’t be more grateful for their unending 

academic, personal, and financial support over the last four years. I am also a member of the Schreyer 

Honors College and Presidential Leadership Academy but, in all honesty, receive significantly less 

support from these programs. In terms of coursework, I will be graduating with over 220 credits, five 

minors, and two certificates. The geobiology degree allowed me to specialize and take courses that 

interested me without the courses that I’d never use required for a biology or geology degree (ex. 

biochemistry or geophysics). My five minors (wildlife and fisheries science, marine science, biology, 
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global and international studies, astrobiology), allowed me to expand my knowledge base into other 

disciplines oftentimes related to paleontology. 

While COVID-19 did fundamentally change my education, despite what the administration might 

argue, it also allowed me to expand my research through additional virtual projects. My second year, I 

started another project with Dr. Wilf and Dr. Robert Kooyman (Macquarie University, Australia) 

compiling modern rainforest plot data from Southeast Asia to study the ecological importance and 

distribution of Gondwanan plant lineages and assessing paleo-heritage in the region. This project 

strengthened my data management skills and also my mentoring skills, as I oversaw several students on 

this project. Additionally, I participated in an REU with the Smithsonian National Museum of Natural 

History with Drs. Camilla Souto and Gene Hunt in which I studied cassiduloid evolution. This project 

allowed me to try my hand at invertebrate paleontology and paleobiology and while I enjoyed my project, 

I did not feel the same spark that I felt for my paleobotany projects. While COVID allowed me to expand 

my research projects, it also stymied my field skills and hands-on work with fossils. To remedy this, I 

applied for, and received, an Erickson Grant and worked on plant macrofossils from the Tanjung 

Formation, Borneo, Indonesia. While the collection is small, it has allowed me to learn the skills 

necessary to describe a fossil flora and how to describe fossil specimens.  

My thesis itself was a labor of love that had many stalls along the way. Starting this project early 

allowed me to conduct a more thorough and comprehensive thesis than most other senior theses. I studied 

all 14 families, learned and conducted all analyses, designed all figures, and wrote the manuscript at a 

level to submit for publication. Creating the scoring system itself took over six months of trial and error 

and another year to score all of the heat maps and run analyses. I spent another year and a half writing the 

manuscript and creating the figures using Adobe Photoshop and Illustrator (which has a very large 

learning curve). Along the way, I fine-tuned the project through presentations at conferences including the 

Midcontinent Paleobotanical Colloquium (MPC) 2020, Botany 2020 and 2021, and the Geobiology 

Symposium 2021. This project also allowed me to explore the process of scientific publication and peer 
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review. As mentioned in the Preface, my honors thesis has been published in American Journal of 

Botany. I am the first undergraduate researcher in the PSU paleobotany lab to publish a paper as first 

author and corresponding author before graduating. As first and corresponding author, I also wrote the 

cover letter, created the Figshare file, submitted the manuscript for publication, and responded to peer 

reviews. This experience put into perspective what every peer-reviewed paper goes through before it can 

be read by scientists. After almost four years working with Dr. Peter Wilf and my extensive 

paleobotanical research, I cannot see myself leaving paleobotany. I do not yet know where I will spend 

the next five years, but I know it will be in a Ph.D. program studying plant fossils.  
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Appendix A 

 
Data Availability 

All marked-up heat maps and data matrices generated from this work are available open access 

on Figshare, https://doi.org/10.6084/m9.figshare.17010020. This includes separate pdf heat map 

files for each family, a csv file with raw scores for all heat maps, and summary files for mean 

and median scores for each family. I also included within-family means and medians separated 

by toothed vs. untoothed and lobed vs. unlobed leaves, in separate csv files. Finally, box plots of 

top-1 scores by family for each of 21 leaf locations as pdf file are also available. See Fig. 2 of 

this thesis for top-5 box plots and more information. 

 The original heat maps that I scored for this article (Wilf et al., 2016) were previously 

published on Figshare (https://doi.org/10.6084/m9.figshare.1521157.v1).  

  

https://doi.org/10.6084/m9.figshare.17010020
https://doi.org/10.6084/m9.figshare.1521157.v1


49 
BIBLIOGRAPHY 

 

 

Almeida, B. K., Garg, M., Kubat, M., & Afkhami, M. E. (2020). Not that kind of tree: Assessing 

the potential for decision tree–based plant identification using trait databases. 

Applications in Plant Sciences, 8(7), e11379. https://doi.org/10.1002/aps3.11379 

Andrés-Hernández, A. R., & Terrazas, T. (2009). Leaf architecture of Rhus s.str. 

(Anacardiaceae). Feddes Repertorium, 120(5–6), 293–306. 

https://doi.org/10.1002/fedr.200911109 

Angiosperm Phylogeny Group. (1998). An ordinal classification for the families of flowering 

plants. Annals of the Missouri Botanical Garden, 85(4), 531–553. 

https://doi.org/10.2307/2992015 

Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group 

classification for the orders and families of flowering plants: APG III. Botanical Journal 

of the Linnean Society, 161(2), 105–121. https://doi.org/10.1111/j.1095-

8339.2009.00996.x 

Angiosperm Phylogeny Group. (2016). An update of the Angiosperm Phylogeny Group 

classification for the orders and families of flowering plants: APG IV. Botanical Journal 

of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385 

Bacon, C. D., Simmons, M. P., Archer, R. H., Zhao, L.-C., & Andriantiana, J. (2016). 

Biogeography of the Malagasy Celastraceae: Multiple independent origins followed by 

widespread dispersal of genera from Madagascar. Molecular Phylogenetics and 

Evolution, 94(A), 365–382. https://doi.org/10.1016/j.ympev.2015.09.013 



50 
Bakker, F. T., Antonelli, A., Clarke, J. A., Cook, J. A., Edwards, S. V., Ericson, P. G. P., Faurby, 

S., Ferrand, N., Gelang, M., Gillespie, R. G., Irestedt, M., Lundin, K., Larsson, E., 

Matos-Maraví, P., Müller, J., Proschwitz, T. von, Roderick, G. K., Schliep, A., Wahlberg, 

N., … Källersjö, M. (2020). The Global Museum: Natural history collections and the 

future of evolutionary science and public education. PeerJ, 8, e8225. 

https://doi.org/10.7717/peerj.8225 

Bama, B. S., Valli, S. M., Raju, S., & Kumar, V. A. (2011). Context based leaf image retrieval 

(CBLIR) using shape, color, and texture features. Indian Journal of Computer Science 

and Engineering, 2(2), 202–211. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.4263&rep=rep1&type=pdf 

Banerjee, S., & Pamula, R. (2020). Random Forest boosted CNN: An empirical technique for 

plant classification. In J. K. Mandal & S. Mukhopadhyay (Eds.), Proceedings of the 

Global AI Congress 2019 (Vol. 1112, pp. 251–261). Springer. 

https://doi.org/10.1007/978-981-15-2188-1_20 

Barclay, R. S., & Johnson, K. R. (2004). West Bijou Site Cretaceous-Tertiary boundary, Denver 

Basin, Colorado. In Nelsen, E.P. and Erslev, E.A., eds., Field Trips in the Southern Rocky 

Mountains, USA, (pp. 59–68). Geological Society of America Field Guide 5. 

https://doi.org/10.1130/0-8137-0005-1.59 

Barclay, R. S., Johnson, K. R., Betterton, W. J., & Dilcher, D. L. (2003). Stratigraphy and 

megaflora of a K-T boundary section in the eastern Denver Basin, Colorado. Rocky 

Mountain Geology, 38(1), 45–71. https://doi.org/10.2113/gsrocky.38.1.45 



51 
Beaman, R. S., & Cellinese, N. (2012). Mass digitization of scientific collections: New 

opportunities to transform the use of biological specimens and underwrite biodiversity 

science. ZooKeys, 209, 7–17. https://doi.org/10.3897/zookeys.209.3313 

Bebber, D. P., Carine, M. A., Wood, J. R. I., Wortley, A. H., Harris, D. J., Prance, G. T., 

Davidse, G., Paige, J., Pennington, T. D., Robson, N. K. B., & Scotland, R. W. (2010). 

Herbaria are a major frontier for species discovery. Proceedings of the National Academy 

of Sciences, 107(51), 22169–22171. https://doi.org/10.1073/pnas.1011841108 

Belhumeur, P. N., Chen, D., Feiner, S., Jacobs, D. W., Kress, W. J., Ling, H., Lopez, I., 

Ramamoorthi, R., Sheorey, S., White, S., & Zhang, L. (2008). Searching the world’s 

herbaria: A system for visual identification of plant pecies. In D. Forsyth, P. Torr, & A. 

Zisserman (Eds.), Computer Vision – ECCV 2008 (Vol. 5305, pp. 116–129). Springer. 

https://doi.org/10.1007/978-3-540-88693-8_9 

Boucher, L. D., Manchester, S. R., & Judd, W. S. (2003). An extinct genus of Salicaceae based 

on twigs with attached flowers, fruits, and foliage from the Eocene Green River 

Formation of Utah and Colorado, USA. American Journal of Botany, 90(9), 1389–1399. 

https://doi.org/10.3732/ajb.90.9.1389 

Brummitt, N., Araújo, A. C., & Harris, T. (2021). Areas of plant diversity—What do we know? 

Plants, People, Planet, 3(1), 33–44. https://doi.org/10.1002/ppp3.10110 

Bryson, A. E., Brown, M. W., Mullins, J., Dong, W., Bahmani, K., Bornowski, N., Chiu, C., 

Engelgau, P., Gettings, B., Gomezcano, F., Gregory, L. M., Haber, A. C., Hoh, D., 

Jennings, E. E., Ji, Z., Kaur, P., Raju, S. K. K., Long, Y., Lotreck, S. G., … Chitwood, D. 

H. (2020). Composite modeling of leaf shape across shoots discriminates Vitis species 



52 
better than individual leaves. Applications in Plant Sciences, 8(12), e11404. 

https://doi.org/doi.org/10.1002/aps3.11404 

Caballero, C., & Aranda, M. C. (2010). Plant species identification using leaf image retrieval. 

Proceedings of the ACM International Conference on Image and Video Retrieval, 327–

334. https://doi.org/10.1145/1816041.1816089 

Cámara-Leret, R., & Bascompte, J. (2021). Language extinction triggers the loss of unique 

medicinal knowledge. Proceedings of the National Academy of Sciences, 118(24), 

e2103683118. https://doi.org/10.1073/pnas.2103683118 

Cámara-Leret, R., Raes, N., Roehrdanz, P., De Fretes, Y., Heatubun, C. D., Roeble, L., 

Schuiteman, A., van Welzen, P. C., & Hannah, L. (2019). Climate change threatens New 

Guinea’s biocultural heritage. Science Advances, 5(11), eaaz1455. 

https://doi.org/10.1126/sciadv.aaz1455 

Carranza-Rojas, J., Goëau, H., Bonnet, P., Mata-Montero, E., & Joly, A. (2017). Going deeper in 

the automated identification of herbarium specimens. BMC Evolutionary Biology, 

17(181), 1–14. https://doi.org/10.1186/s12862-017-1014-z 

Carranza-Rojas, J., Joly, A., Goëau, H., Mata-Montero, E., & Bonnet, P. (2018). Automated 

identification of herbarium specimens at different taxonomic levels. In A. Joly, S. 

Vrochidis, K. Karatzas, A. Karppinen, & P. Bonnet (Eds.), Multimedia Tools and 

Applications for Environmental & Biodiversity Informatics (pp. 151–167). Springer 

International Publishing. https://doi.org/10.1007/978-3-319-76445-0_9 

Carranza-Rojas, J., Mata-Montero, E., & Goëau, H. (2018). Hidden biases in automated image-

based plant identification. 2018 IEEE International Work Conference on Bioinspired 

Intelligence (IWOBI), 1–9. https://doi.org/10.1109/IWOBI.2018.8464187 



53 
Carvalho, M. R., Herrera, F. A., Jaramillo, C. A., Wing, S. L., & Callejas, R. (2011). Paleocene 

Malvaceae from northern South America and their biogeographical implications. 

American Journal of Botany, 98(8), 1337–1355. https://doi.org/10.3732/ajb.1000539 

Carvalho, M. R., Jaramillo, C., Parra, F. de la, Caballero-Rodríguez, D., Herrera, F., Wing, S., 

Turner, B. L., D’Apolito, C., Romero-Báez, M., Narváez, P., Martínez, C., Gutierrez, M., 

Labandeira, C., Bayona, G., Rueda, M., Paez-Reyes, M., Cárdenas, D., Duque, Á., 

Crowley, J. L., … Silvestro, D. (2021). Extinction at the end-Cretaceous and the origin of 

modern Neotropical rainforests. Science, 372(6537), 63–68. 

https://doi.org/10.1126/science.abf1969 

Champ, J., Mora‐Fallas, A., Goëau, H., Mata‐Montero, E., Bonnet, P., & Joly, A. (2020). 

Instance segmentation for the fine detection of crop and weed plants by precision 

agricultural robots. Applications in Plant Sciences, 8(7), e11373. 

https://doi.org/10.1002/aps3.11373 

Charters, J., Wang, Z., Chi, Z., Ah Chung Tsoi, & Feng, D. D. (2014). EAGLE: A novel 

descriptor for identifying plant species using leaf lamina vascular features. 2014 IEEE 

International Conference on Multimedia and Expo Workshops (ICMEW), 1–6. 

https://doi.org/10.1109/ICMEW.2014.6890557 

Correa-Narvaez, J. E., & Manchester, S. R. (2021). Distribution and morphological diversity of 

Palaeocarpinus (Betulaceae) from the Paleogene of the Northern Hemisphere. The 

Botanical Review. https://doi.org/10.1007/s12229-021-09258-y 

Crane, P. R. (1981). Betulaceous leaves and fruits from the British Upper Palaeocene. Botanical 

Journal of the Linnean Society, 83(2), 103–136. https://doi.org/10.1111/j.1095-

8339.1981.tb01224.x 



54 
Crepet, W. L., & Nixon, K. C. (1989). Earliest megafossil evidence of Fagaceae: Phylogenetic 

and biogeographic implications. American Journal of Botany, 76(6), 842–855. JSTOR. 

https://doi.org/10.2307/2444540 

Croat, T. B. (1978). Flora of Barro Colorado Island. Stanford University Press. 

Das, A., Bucksch, A., Price, C. A., & Weitz, J. S. (2014). ClearedLeavesDB: An online database 

of cleared plant leaf images. Plant Methods, 10, 8. https://doi.org/10.1186/1746-4811-10-

8 

Del Rio, C., Wang, T.-X., Liu, J., Liang, S.-Q., Spicer, R. A., Wu, F.-X., Zhou, Z.-K., & Su, T. 

(2020). Asclepiadospermum gen. Nov., the earliest fossil record of Asclepiadoideae 

(Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its 

biogeographic implications. American Journal of Botany, 107(1), 126–138. 

https://doi.org/10.1002/ajb2.1418 

DeVore, M. L., Moore, S. M., Pigg, K. B., & Wehr, W. C. (2004). Fossil Neviusia leaves 

(Rosaceae: Kerrieae) from the lower-middle Eocene of southern British Columbia. 

Rhodora, 106(927), 197–209. https://www.jstor.org/stable/23314752 

DeVore, M. L., & Pigg, K. B. (2007). A brief review of the fossil history of the family Rosaceae 

with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and 

British Columbia, Canada. Plant Systematics and Evolution, 266(1), 45–57. 

https://doi.org/10.1007/s00606-007-0540-3 

Dietl, G. P., & Flessa, K. W. (2011). Conservation paleobiology: Putting the dead to work. 

Trends in Ecology & Evolution, 26(1), 30–37. https://doi.org/10.1016/j.tree.2010.09.010 

Dilcher, D. L. (1974). Approaches to the identification of angiosperm leaf remains. The 

Botanical Review, 40(1), 1–157. 



55 
Dilcher, D. L., & Lott, T. A. (2005). A middle Eocene fossil plant assemblage (Powers Clay Pit) 

from Western Tennessee. Bulletin of the Florida Museum of Natural History, 45(1), 1–

43. 

Doyle, J. (2007). Systematic value and evolution of leaf architecture across the angiosperms in 

light of molecular phylogenetic analyses. CFS Courier Forschungsinstitut Senckenberg, 

258, 21–37. 

Ellis, B., Daly, D. C., Hickey, L. J., Johnson, K. R., Mitchell, J. D., Wilf, P., & Wing, S. L. 

(2009). Manual of Leaf Architecture (2nd ed.). Cornell University Press. 

Feild, T. S., Brodribb, T. J., Iglesias, A., Chatelet, D. S., Baresch, A., Upchurch Jr., G. R., 

Gomez, B., Mohr, B. A. R., Coiffard, C., Kvacek, J., & Jaramillo, C. (2011). Fossil 

evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the 

National Academy of Sciences, 108(20), 8363–8366. 

https://doi.org/10.1073/pnas.1014456108 

Foote, M. (1994). Morphological disparity in Ordovician-Devonian crinoids and the early 

saturation of morphological space. Paleobiology, 20(3), 320–344. JSTOR. 

https://www.jstor.org/stable/2401006 

Foote, M. (1995). Morphological diversification of Paleozoic crinoids. Paleobiology, 21(3), 273–

299. https://doi.org/10.1017/S0094837300013300 

Friis, E. M., Crane, P. R., & Pedersen, K. R. (2011). Early Flowers and Angiosperm Evolution. 

Cambridge University Press. 

Gandolfo, M. A., Hermsen, E. J., Zamaloa, M. C., Nixon, K. C., González, C. C., Wilf, P., 

Cúneo, N. R., & Johnson, K. R. (2011). Oldest known Eucalyptus macrofossils are from 

South America. PLOS ONE, 6(6), e21084. https://doi.org/10.1371/journal.pone.0021084 



56 
Gentry, A. H. (1993). A Field Guide to the Families and Genera of Woody Plants of Northwest 

South America (Colombia, Ecuador, Peru). Conservation International (1st ed.). 

University of Chicago Press. 

Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M., Schubert, L., Radford, A., & Olah, C. 

(2021). Multimodal neurons in artificial neural networks. Distill, 6(3), e30. 

https://doi.org/10.23915/distill.00030 

Gouveia, F., Filipe, V., Reis, M., Couto, C., & Bulas-Cruz, J. (1997). Biometry: The 

characterisation of chestnut-tree leaves using computer vision. ISIE ’97 Proceeding of the 

IEEE International Symposium on Industrial Electronics, 3, 757–760. 

https://doi.org/10.1109/ISIE.1997.648634 

Graham, A. (2009). Fossil record of the Rubiaceae. Annals of the Missouri Botanical Garden, 

96(1), 90–108. https://doi.org/10.3417/2006165 

Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant 

identification using vein morphological patterns. Computers and Electronics in 

Agriculture, 127, 418–424. https://doi.org/10.1016/j.compag.2016.07.003 

Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, 

L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O’Dea, A., Pandolfi, J. M., 

Simpson, C., & Tittensor, D. P. (2012). Extinctions in ancient and modern seas. Trends in 

Ecology & Evolution, 27(11), 608–617. https://doi.org/10.1016/j.tree.2012.07.010 

Hedrick, B. P., Heberling, J. M., Meineke, E. K., Turner, K. G., Grassa, C. J., Park, D. S., 

Kennedy, J., Clarke, J. A., Cook, J. A., Blackburn, D. C., Edwards, S. V., & Davis, C. C. 

(2020). Digitization and the future of natural history collections. BioScience, 70(3), 243–

251. https://doi.org/10.1093/biosci/biz163 



57 
Herendeen, P. S., & Herrera, F. (2019). Eocene fossil legume leaves referable to the extant genus 

Arcoa (Caesalpinioideae, Leguminosae). International Journal of Plant Sciences, 180(3), 

220–231. https://doi.org/10.1086/701468 

Hickey, L. J. (1997). Stratigraphy and paleobotany of the Golden Valley Formation (Early 

Tertiary) of western North Dakota. Geological Society of America Memoir, 150, 1–183. 

https://doi.org/10.1130/MEM150 

Hickey, L. J., & Wolfe, J. A. (1975). The bases of angiosperm phylogeny: Vegetative 

morphology. Annals of the Missouri Botanical Garden, 62(3), 538–589. 

https://doi.org/10.2307/2395267 

Hu, R., Jia, W., Ling, H., & Huang, D. (2012). Multiscale distance matrix for fast plant leaf 

recognition. IEEE Transactions on Image Processing, 21(11), 4667–4672. 

https://doi.org/10.1109/TIP.2012.2207391 

Huff, P. M., Wilf, P., & Azumah, E. J. (2003). Digital future for paleoclimate estimation from 

fossil leaves? Preliminary results. Palaios, 18(3), 266–274. https://doi.org/10.1669/0883-

1351(2003)018<0266:DFFPEF>2.0.CO;2 

Im, C., Nishida, H., & Kunii, T. L. (1998). Recognizing plant species by leaf shapes-a case study 

of the Acer family. Proceedings. Fourteenth International Conference on Pattern 

Recognition (Cat. No.98EX170), 2, 1171–1173. 

https://doi.org/10.1109/ICPR.1998.711904 

Ivory, S. J., Early, R., Sax, D. F., & Russell, J. (2016). Niche expansion and temperature 

sensitivity of tropical African montane forests. Global Ecology and Biogeography, 25(6), 

693–703. https://doi.org/10.1111/geb.12446 



58 
Jamil, N., Hussin, N. A. C., Nordin, S., & Awang, K. (2015). Automatic plant identification: Is 

shape the key feature? Procedia Computer Science, 76, 436–442. 

https://doi.org/10.1016/j.procs.2015.12.287 

Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., Dufour-Kowalski, S., Affouard, 

A., Carré, J., Molino, J.-F., Boujemaa, N., & Barthélémy, D. (2016). A look inside the 

Pl@ntNet experience. Multimedia Systems, 22(6), 751–766. 

https://doi.org/10.1007/s00530-015-0462-9 

Jordan, G. J., Bannister, J. M., Mildenhall, D. C., Zetter, R., & Lee, D. E. (2010). Fossil 

Ericaceae from New Zealand: Deconstructing the use of fossil evidence in historical 

biogeography. American Journal of Botany, 97(1), 59–70. 

https://doi.org/10.3732/ajb.0900109 

Kearney, M., & Porter, W. P. (2004). Mapping the fundamental niche: Physiology, climate, and 

the distribution of a nocturnal lizard. Ecology, 85(11), 3119–3131. 

https://doi.org/10.1890/03-0820 

Keller, R. (2004). Identification of Tropical Woody Plants in the Absence of Flowers: A Field 

Guide. (2nd ed., Issue Ed. 2). Birkhäuser. 

Kellner, A., Benner, M., Walther, H., Kunzmann, L., Wissemann, V., & Ritz, C. M. (2012). Leaf 

architecture of extant species of Rosa L. and the Paleogene species Rosa lignitum Heer 

(Rosaceae). International Journal of Plant Sciences, 173(3), 239–250. 

https://doi.org/10.1086/663965 

Kooyman, R. M., Morley, R. J., Crayn, D. M., Joyce, E. M., Rossetto, M., Slik, J. W. F., Strijk, 

J. S., Su, T., Yap, J.-Y. S., & Wilf, P. (2019). Origins and assembly of Malesian 



59 
rainforests. Annual Review of Ecology, Evolution, and Systematics, 50(1), 119–143. 

https://doi.org/10.1146/annurev-ecolsys-110218-024737 

Kooyman, R. M., Wilf, P., Barreda, V. D., Carpenter, R. J., Jordan, G. J., Sniderman, J. M. K., 

Allen, A., Brodribb, T. J., Crayn, D., Feild, T. S., Laffan, S. W., Lusk, C. H., Rossetto, 

M., & Weston, P. H. (2014). Paleo-Antarctic rainforest into the modern Old World 

tropics: The rich past and threatened future of the “southern wet forest survivors.” 

American Journal of Botany, 101(12), 2121–2135. https://doi.org/10.3732/ajb.1400340 

Krug, A. Z., & Patzkowsky, M. E. (2007). Geographic variation in turnover and recovery from 

the Late Ordovician mass extinction. Paleobiology, 33(3), 435–454. 

https://doi.org/10.1666/06039.1 

Kubitzki, K., & Bayer, C. (2013). Flowering plants. Dicotyledons: Malvales, Capparales and 

Non-betalain Caryophyllales (Vol. 5). Springer Science & Business Media. 

Kumar, N., Belhumeur, P. N., Biswas, A., Jacobs, D. W., Kress, W. J., Lopez, I. C., & Soares, J. 

V. B. (2012). Leafsnap: A computer vision system for automatic plant species 

identification. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.), 

Computer Vision – ECCV 2012 (pp. 502–516). Springer. 

Laga, H., Kurtek, S., Srivastava, A., Golzarian, M., & Miklavcic, S. J. (2012). A Riemannian 

elastic metric for shape-based plant leaf classification. 2012 International Conference on 

Digital Image Computing Techniques and Applications (DICTA), 1–7. 

https://doi.org/10.1109/DICTA.2012.6411702 

Larese, M. G., Bayá, A. E., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M. (2014). 

Multiscale recognition of legume varieties based on leaf venation images. Expert Systems 

with Applications, 41(10), 4638–4647. https://doi.org/10.1016/j.eswa.2014.01.029 



60 
Larese, M. G., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M. (2012). Legume 

identification by leaf vein images classification. In L. Alvarez, M. Mejail, L. Gomez, & J. 

Jacobo (Eds.), Progress in Pattern Recognition, Image Analysis, Computer Vision, and 

Applications. CIARP 2012 (Vol. 7441, pp. 447–454). Springer. 

https://doi.org/10.1007/978-3-642-33275-3_55 

Larese, M. G., & Granitto, P. M. (2016). Finding local leaf vein patterns for legume 

characterization and classification. Machine Vision and Applications, 27(5), 709–720. 

https://doi.org/10.1007/s00138-015-0732-8 

Larese, M. G., Namías, R., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M. (2014). 

Automatic classification of legumes using leaf vein image features. Pattern Recognition, 

47(1), 158–168. https://doi.org/10.1016/j.patcog.2013.06.012 

Lebreton Anberrée, J., Manchester, S. R., Huang, J., Li, S., Wang, Y., & Zhou, Z.-K. (2015). 

First fossil fruits and leaves of Burretiodendron s.l. (Malvaceae s.l.) in Southeast Asia: 

Implications for taxonomy, biogeography, and paleoclimate. International Journal of 

Plant Sciences, 176(7), 682–696. https://doi.org/10.1086/682166 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

https://doi.org/10.1038/nature14539 

Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and 

learns leaf features for plant classification. Pattern Recognition, 71, 1–13. 

https://doi.org/10.1016/j.patcog.2017.05.015 

Lee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015). Deep-plant: Plant identification 

with convolutional neural networks. 2015 IEEE International Conference on Image 

Processing (ICIP), 452–456. https://doi.org/10.1109/ICIP.2015.7350839 



61 
Leebens-Mack, J. H., Barker, M. S., Carpenter, E. J., Deyholos, M. K., Gitzendanner, M. A., 

Graham, S. W., Grosse, I., Li, Z., Melkonian, M., Mirarab, S., Porsch, M., Quint, M., 

Rensing, S. A., Soltis, D. E., Soltis, P. S., Stevenson, D. W., Ullrich, K. K., Wickett, N. 

J., DeGironimo, L., … One Thousand Plant Transcriptomes Initiative. (2019). One 

thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574(7780), 

679–685. https://doi.org/10.1038/s41586-019-1693-2 

Linsley, J. W., Linsley, D. A., Lamstein, J., Ryan, G., Shah, K., Castello, N. A., Oza, V., Kalra, 

J., Wang, S., Tokuno, Z., Javaherian, A., Serre, T., & Finkbeiner, S. (2021). Super-human 

cell death detection with biomarker-optimized neural networks. Sciences Advances 7: 

eabf8142.  

Little, D. P., Tulig, M., Tan, K. C., Liu, Y., Belongie, S., Kaeser‐Chen, C., Michelangeli, F. A., 

Panesar, K., Guha, R. V., & Ambrose, B. A. (2020). An algorithm competition for 

automatic species identification from herbarium specimens. Applications in Plant 

Sciences, 8(6), e11365. https://doi.org/10.1002/aps3.11365 

Little, S. A., Kembel, S. W., & Wilf, P. (2010). Paleotemperature proxies from leaf fossils 

reinterpreted in light of evolutionary history. PLOS ONE, 5(12), e15161. 

https://doi.org/10.1371/journal.pone.0015161 

Looy, C. V., Brugman, W. A., Dilcher, D. L., & Visscher, H. (1999). The delayed resurgence of 

equatorial forests after the Permian–Triassic ecologic crisis. Proceedings of the National 

Academy of Sciences, 96(24), 13857–13862. https://doi.org/10.1073/pnas.96.24.13857 

Lu, H., Jiang, W., Ghiassi, M., Lee, S., & Nitin, M. (2012). Classification of Camellia 

(Theaceae) species using leaf architecture variations and pattern recognition techniques. 

PLOS ONE, 7(1), e29704. https://doi.org/10.1371/journal.pone.0029704 



62 
Lyson, T. R., Miller, I. M., Bercovici, A. D., Weissenburger, K., Fuentes, A. J., Clyde, W. C., 

Hagadorn, J. W., Butrim, M. J., Johnson, K. R., Fleming, R. F., Barclay, R. S., 

Maccracken, S. A., Lloyd, B., Wilson, G. P., Krause, D. W., & Chester, S. G. B. (2019). 

Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass 

extinction. Science, 366(6468), 977–983. https://doi.org/10.1126/science.aay2268 

MacGinitie, H. D. (1969). The Eocene Green River flora of northwestern Colorado and 

northeastern Utah. University of California Publications in Geological Sciences. 

https://books.google.com/books?id=Q2LpM5cB_X8C&printsec=frontcover&source=gbs

_ge_summary_r&cad=0#v=onepage&q&f=false 

Manchester, S. R. (2001). Leaves and fruits of Aesculus (Sapindales) from the Paleocene of 

North America. International Journal of Plant Sciences, 162(4), 985–998. 

https://doi.org/10.1086/320783 

Manchester, S. R., & Crane, P. R. (1983). Attached leaves, inflorescences, and fruits of 

Fagopsis, an extinct genus of fagaceous affinity from the Oligocene Florissant Flora of 

Colorado, U.S.A. American Journal of Botany, 70(8), 1147–1164. 

https://doi.org/10.2307/2443285 

Manchester, S. R., Dilcher, D. L., & Tidwell, W. D. (1986). Interconnected reproductive and 

vegetative remains of Populus (Salicaceae) from the Middle Eocene Green River 

Formation, Northeastern Utah. American Journal of Botany, 73(1), 156–160. 

https://doi.org/10.1002/j.1537-2197.1986.tb09691.x 

Manchester, S. R., Dilcher, D. L., & Wing, S. L. (1998). Attached leaves and fruits of 

myrtaceous affinity from the Middle Eocene of Colorado. Review of Palaeobotany and 

Palynology, 102(3), 153–163. https://doi.org/10.1016/S0034-6667(98)80002-X 



63 
Manchester, S. R., Judd, W. S., & Handley, B. (2006). Foliage and fruits of early poplars 

(Salicaceae: Populus) from the Eocene of Utah, Colorado, and Wyoming. International 

Journal of Plant Sciences, 167(4), 897–908. https://doi.org/10.1086/503918 

Marler, T. E., & del Moral, R. (2011). Primary succession along an elevation gradient 15 years 

after the eruption of Mount Pinatubo, Luzon, Philippines. Pacific Science, 65(2), 157–

173. https://doi.org/10.2984/65.2.157 

Marshall, C. R., Finnegan, S., Clites, E. C., Holroyd, P. A., Bonuso, N., Cortez, C., Davis, E., 

Dietl, G. P., Druckenmiller, P. S., Eng, R. C., Garcia, C., Estes-Smargiassi, K., Hendy, 

A., Hollis, K. A., Little, H., Nesbitt, E. A., Roopnarine, P., Skibinski, L., Vendetti, J., & 

White, L. D. (2018). Quantifying the dark data in museum fossil collections as 

palaeontology undergoes a second digital revolution. Biology Letters, 14(9), 20180431. 

https://doi.org/10.1098/rsbl.2018.0431 

Martínez-Millán, M., & Cevallos-Ferriz, S. R. S. (2005). Arquitectura foliar de Anacardiaceae. 

Revista Mexicana de Diodiversidad, 76(2), 137–190. 

http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1870-

34532005000200003&lng=es&nrm=iso&tlng=es 

Mata-Montero, E., & Carranza-Rojas, J. (2015). A texture and curvature bimodal leaf 

recognition model for identification of Costa Rican plant species. 2015 Latin American 

Computing Conference (CLEI), 1–12. https://doi.org/10.1109/CLEI.2015.7360026 

Mata-Montero, E., & Carranza-Rojas, J. (2016). Automated plant species identification: 

Challenges and opportunities. In F. J. Mata & A. Pont (Eds.), ICT for Promoting Human 

Development and Protecting the Environment. WITFOR 2016 (Vol. 481, pp. 26–36). 

Springer International Publishing. https://doi.org/10.1007/978-3-319-44447-5_3 



64 
McClain, A. M., & Manchester, S. R. (2001). Dipteronia (Sapindaceae) from the Tertiary of 

North America and implications for the phytogeographic history of the Aceroideae. 

American Journal of Botany, 88(7), 1316–1325. https://doi.org/10.2307/3558343 

McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. MjM software design 

Gleneden Beach, OR. 

Minowa, Y., & Nagasaki, Y. (2020). Convolutional neural network applied to tree species 

identification based on leaf images. Journal of Forest Planning, 26, 1–11. 

https://doi.org/10.20659/jfp.2020.001 

Mitchell, J. D., & Daly, D. C. (2015). A revision of Spondias L. (Anacardiaceae) in the 

Neotropics. PhytoKeys, 55, 1–92. https://doi.org/10.3897/phytokeys.55.8489 

Mouine, S., Yahiaoui, I., & Verroust-Blondet, A. (2012). Advanced shape context for plant 

species identification using leaf image retrieval. Proceedings of the 2nd ACM 

International Conference on Multimedia Retrieval, 1–8. 

https://doi.org/10.1145/2324796.2324853 

Nam, Y., Hwang, E., & Kim, D. (2008). A similarity-based leaf image retrieval scheme: Joining 

shape and venation features. Computer Vision and Image Understanding, 110(2), 245–

259. https://doi.org/10.1016/j.cviu.2007.08.002 

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., & Mordvintsev, A. 

(2018). The building blocks of interpretability. Distill, 3(3), e10. 

https://doi.org/10.23915/distill.00010 

Owens, S. A., Fields, P. F., & Ewers, F. W. (1998). Degradation of the upper pulvinus in modern 

and fossil leaves of Cercis (Fabaceae). American Journal of Botany, 85(2), 273–284. 

https://doi.org/10.2307/2446316 



65 
Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S., & Riccardi, G. (2015). Digitization of 

biodiversity collections reveals biggest data on biodiversity. BioScience, 65(9), 841–842. 

https://doi.org/10.1093/biosci/biv104 

Park, J., Hwang, E., & Nam, Y. (2008). Utilizing venation features for efficient leaf image 

retrieval. Journal of Systems and Software, 81(1), 71–82. 

https://doi.org/10.1016/j.jss.2007.05.001 

Pigg, K. B., Manchester, S. R., & Wehr, W. C. (2003). Corylus, Carpinus, and Palaeocarpinus 

(Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of 

northwestern North America. International Journal of Plant Sciences, 164(5), 807–822. 

https://doi.org/10.1086/376816 

Pirie, M. D., & Doyle, J. A. (2012). Dating clades with fossils and molecules: The case of 

Annonaceae. Botanical Journal of the Linnean Society, 169(1), 84–116. 

https://doi.org/10.1111/j.1095-8339.2012.01234.x 

Priya, C. A., Balasaravanan, T., & Thanamani, A. S. (2012). An efficient leaf recognition 

algorithm for plant classification using support vector machine. International Conference 

on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012), 428–432. 

https://doi.org/10.1109/ICPRIME.2012.6208384 

Pryer, K. M., Tomasi, C., Wang, X., Meineke, E. K., & Windham, M. D. (2020). Using 

computer vision on herbarium specimen images to discriminate among closely related 

horsetails (Equisetum). Applications in Plant Sciences, 8(6), e11372. 

https://doi.org/10.1002/aps3.11372 



66 
Punyasena, S. W., Tcheng, D. K., Wesseln, C., & Mueller, P. G. (2012). Classifying black and 

white spruce pollen using layered machine learning. New Phytologist, 196(3), 937–944. 

https://doi.org/10.1111/j.1469-8137.2012.04291.x 

Ramírez, J. L., & Cevallos‐Ferriz, S. R. S. (2002). A diverse assemblage of Anacardiaceae from 

Oligocene sediments, Tepexi de Rodriguez, Puebla, Mexico. American Journal of 

Botany, 89(3), 535–545. https://doi.org/10.3732/ajb.89.3.535 

Ramírez, J. L., Cevallos‐Ferriz, S. R. S., & Silva‐Pineda, A. (2000). Reconstruction of the leaves 

of two new species of Pseudosmodingium (Anacardiaceae) from Oligocene Strata of 

Puebla, Mexico. International Journal of Plant Sciences, 161(3), 509–519. 

https://doi.org/10.1086/314261 

Romero, I. C., Kong, S., Fowlkes, C. C., Jaramillo, C., Urban, M. A., Oboh-Ikuenobe, F., 

D’Apolito, C., & Punyasena, S. W. (2020). Improving the taxonomy of fossil pollen 

using convolutional neural networks and superresolution microscopy. Proceedings of the 

National Academy of Sciences, 117(45), 28496–28505. 

https://doi.org/10.1073/pnas.2007324117 

Roth Jr., J. L., & Dilcher, D. L. (1979). Investigations of angiosperms from the Eocene of North 

America: Stipulate leaves of the Rubiaceae including a probable polyploid population. 

American Journal of Botany, 66(10), 1194–1207. JSTOR. 

https://doi.org/10.2307/2442218 

Roy, K., & Foote, M. (1997). Morphological approaches to measuring biodiversity. Trends in 

Ecology & Evolution, 12(7), 277–281. https://doi.org/10.1016/S0169-5347(97)81026-9 



67 
Rzanny, M., Mäder, P., Deggelmann, A., Chen, M., & Wäldchen, J. (2019). Flowers, leaves or 

both? How to obtain suitable images for automated plant identification. Plant Methods, 

15(77). https://doi.org/10.1186/s13007-019-0462-4 

Sawangchote, P., Grote, P. J., & Dilcher, D. L. (2009). Tertiary leaf fossils of Mangifera 

(Anacardiaceae) from Li Basin, Thailand as examples of the utility of leaf marginal 

venation characters. American Journal of Botany, 96(11), 2048–2061. 

https://doi.org/10.3732/ajb.0900086 

Sawangchote, P., Grote, P. J., & Dilcher, D. L. (2010). Tertiary leaf fossils of Semecarpus 

(Anacardiaceae) from Li Basin, Northern Thailand. Thai Forest Bulletin (Botany), 38, 8–

22. https://li01.tci-thaijo.org/index.php/ThaiForestBulletin/article/view/24335 

Schuettpelz, E., Frandsen, P. B., Dikow, R., Brown, A., Orli, S., Peters, M., Metallo, A., Funk, 

V. A., & Dorr, L. (2017). Applications of deep convolutional neural networks to digitized 

natural history collections. Biodiversity Data Journal, 5, e21139. 

https://doi.org/10.3897/BDJ.5.e21139 

Seeland, M., Rzanny, M., Boho, D., Wäldchen, J., & Mäder, P. (2019). Image-based 

classification of plant genus and family for trained and untrained plant species. BMC 

Bioinformatics, 20(1), 4. https://doi.org/10.1186/s12859-018-2474-x 

Serre, T. (2019). Deep learning: The good, the bad, and the ugly. Annual Review of Vision 

Science, 5(1), 399–426. https://doi.org/10.1146/annurev-vision-091718-014951 

Simpson, M. G. (2010). 8 - Diversity and Classification of Flowering Plants: Eudicots. In M. G. 

Simpson (Ed.), Plant Systematics (2nd ed., pp. 275–448). Academic Press. 

https://doi.org/10.1016/B978-0-12-374380-0.50008-7 



68 
Soepadmo, E., & Wong, K. M. (1995). Tree Flora of Sabah and Sarawak (Vol. 1). Forest 

Research Institute Malaysia. 

Soltis, P. S., Nelson, G., Zare, A., & Meineke, E. K. (2020). Plants meet machines: Prospects in 

machine learning for plant biology. Applications in Plant Sciences, 8(6), e11371. 

https://doi.org/10.1002/aps3.11371 

Spitzer, M., Wildenhain, J., Rappsilber, J., & Tyers, M. (2014). BoxPlotR: A web tool for 

generation of box plots. Nature Methods, 11(2), 121–122. 

https://doi.org/10.1038/nmeth.2811 

Stiles, E., Wilf, P., Iglesias, A., Gandolfo, M. A., & Cúneo, N. R. (2020). Cretaceous–Paleogene 

plant extinction and recovery in Patagonia. Paleobiology, 46(4), 445–469. 

https://doi.org/10.1017/pab.2020.45 

Sun, F., & Stockey, R. A. (1992). A new species of Palaeocarpinus (Betulaceae) based on 

infructescences, fruits, and associated staminate inflorescences and leaves from the 

Paleocene of Alberta, Canada. International Journal of Plant Sciences, 153(1), 136–146. 

https://doi.org/10.1086/297015 

Tan, J. M. P., & Buot, I. E. (2019). Cluster and ordination analyses of leaf architectural 

characters in classifying Polypodiales sensu PPG. Thailand Natural History Museum 

Journal, 13(1), 27–42. 

Tarran, M., Wilson, P. G., Paull, R., Biffin, E., & Hill, R. S. (2018). Identifying fossil Myrtaceae 

leaves: The first described fossils of Syzygium from Australia. American Journal of 

Botany, 105(10), 1748–1759. https://doi.org/10.1002/ajb2.1163 

Taylor, E. L., Taylor, T. N., & Krings, M. (2009). Paleobotany: The biology and evolution of 

fossil plants (2nd ed.). Academic Press. 



69 
Tcheng, D. K., Nayak, A. K., Fowlkes, C. C., & Punyasena, S. W. (2016). Visual recognition 

software for binary classification and its application to spruce pollen identification. PLOS 

ONE, 11(2), e0148879. https://doi.org/10.1371/journal.pone.0148879 

Unger, J., Merhof, D., & Renner, S. (2016). Computer vision applied to herbarium specimens of 

German trees: Testing the future utility of the millions of herbarium specimen images for 

automated identification. BMC Evolutionary Biology, 16(1), 248. 

https://doi.org/10.1186/s12862-016-0827-5 

Unger, S., Rollins, M., Tietz, A., & Dumais, H. (2020). INaturalist as an engaging tool for 

identifying organisms in outdoor activities. Journal of Biological Education. 

https://doi.org/10.1080/00219266.2020.1739114 

Vajda, V., Raine, J. I., & Hollis, C. J. (2001). Indication of global deforestation at the 

Cretaceous-Tertiary Boundary by New Zealand fern spike. Science, 294(5547), 1700–

1702. https://doi.org/10.1126/science.1064706 

Vizcarra, G., Bermejo, D., Mauricio, A., Gomez, R. Z., & Dianderas, E. (2021). The Peruvian 

Amazon forestry dataset: A leaf image classification corpus. Ecological Informatics, 62, 

101268. https://doi.org/10.1016/j.ecoinf.2021.101268 

Voss, C., Cammarata, N., Goh, G., Petrov, M., Schubert, L., Egan, B., Lim, S. K., & Olah, C. 

(2021). Visualizing Weights. Distill, 6(2), e00024.007. 

https://doi.org/10.23915/distill.00024.007 

Wäldchen, J., & Mäder, P. (2018). Plant species identification using computer vision techniques: 

A systematic literature review. Archives of Computational Methods in Engineering, 

25(2), 507–543. https://doi.org/10.1007/s11831-016-9206-z 



70 
Wäldchen, J., Rzanny, M., Seeland, M., & Mäder, P. (2018). Automated plant species 

identification—Trends and future directions. PLOS Computational Biology, 14(4), 

e1005993. https://doi.org/10.1371/journal.pcbi.1005993 

White, A. E. (2020). Deep learning in deep time. Proceedings of the National Academy of 

Sciences, 117(47), 29268–29270. https://doi.org/10.1073/pnas.2020870117 

Wilf, P., S.L. Wing, H.W. Meyer, J. Rose, R. Saha, T. Serre, N.R. Cúneo, M.P. Donovan, D.M. 

Erwin, M.A. Gandolfo, E. González-Akre, F. Herrera, S. Hu, A. Iglesias, K.R. Johnson, 

T.S. Karim, X. Zou. 2021. An image dataset of cleared, x-rayed, and fossil leaves vetted 

to plant family for human and machine learning. PhytoKeys 187. 93-128. 

Wilf, P. (2008). Fossil angiosperm leaves: Paleobotany’s difficult children prove themselves. 

Paleontological Society Papers, 14, 319–333. 

https://doi.org/10.1017/S1089332600001741 

Wilf, P., Nixon, K. C., Gandolfo, M. A., & Cúneo, N. R. (2019). Eocene Fagaceae from 

Patagonia and Gondwanan legacy in Asian rainforests. Science, 364(6444), eaaw5139. 

https://doi.org/10.1126/science.aaw5139 

Wilf, P., Zhang, S., Chikkerur, S., Little, S. A., Wing, S. L., & Serre, T. (2016). Computer vision 

cracks the leaf code. Proceedings of the National Academy of Sciences, 113(12), 3305–

3310. https://doi.org/10.1073/pnas.1524473113 

Wolfe, J. A., & Wehr, W. (1987). Middle Eocene dicotyledonous plants from Republic, 

northeastern Washington. In Bulletin (U. S. Geological Survey Bulletin No. 1597; 

Bulletin, p. 67). U.S. Government Printing Office; USGS Publications Warehouse. 

https://doi.org/10.3133/b1597 



71 
Wu, J.-Y., Ding, S.-T., Li, Q.-J., Zhao, Z.-R., Dong, C., & Sun, B.-N. (2014). A new species of 

Castanopsis (Fagaceae) from the upper Pliocene of West Yunnan, China and its 

biogeographical implications. Palaeoworld, 23(3–4), 370–382. 

https://doi.org/10.1016/j.palwor.2014.10.005 

Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y., Chang, Y., & Xiang, Q. (2007). A leaf recognition 

algorithm for plant classification using probabilistic neural network. 2007 IEEE 

International Symposium on Signal Processing and Information Technology, 11–16. 

https://doi.org/10.1109/ISSPIT.2007.4458016 

Xing, Y., Gandolfo, M. A., Onstein, R. E., Cantrill, D. J., Jacobs, B. F., Jordan, G. J., Lee, D. E., 

Popova, S., Srivastava, R., Su, T., Vikulin, S. V., Yabe, A., & Linder, H. P. (2016). 

Testing the biases in the rich Cenozoic angiosperm macrofossil record. International 

Journal of Plant Sciences, 177(4), 371–388. https://doi.org/10.1086/685388 

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding neural 

networks through deep visualization. In ICML Workshop on Deep Learning, 1–12. 

Zhao, C., Chan, S. S. F., Cham, W.-K., & Chu, L. M. (2015). Plant identification using leaf 

shapes—A pattern counting approach. Pattern Recognition, 48(10), 3203–3215. 

https://doi.org/10.1016/j.patcog.2015.04.00



 

Edward J. Spagnuolo 
 

Education 
 
The Pennsylvania State University                          University Park, PA 
GPA: 3.930                                                                                                  Expected Graduation: May 2022 
Major: Geobiology Bachelor of Science with Honors          
Minors: Biology, Wildlife and Fisheries Science, Astrobiology, Marine Science, Global and International 
Studies 
Certificate: International Science 
Dean’s List           August 2018—Present 
 
Research Experience 
 
The Pennsylvania State University                                                                                  University Park, PA   
Paleobotany Research                          01/2019—Present          

Decoding family-level features for modern and fossil leaves from computer-vision heat maps 
• Interpreted 3115 published computer vision heat map outputs on cleared leaves in 14 

angiosperm families to isolate new features that can be used to identify extant and fossil leaves 
at the family level 

• Used PAST and R to analyze data through principal component analyses, clusters, and box 
plots 

• Found features used for computer vision analyses in all 14 families, some of which echoed in 
paleobotanical literature and others are new discoveries  

• Presentation given at the Midcontinent Paleobotanical Colloquium 2020, Botany 2020 and 
2021, Geobiology Symposium 2021, and Yale University Buds to Biomes virtual workshop 
2020 

• Manuscript accepted in press with American Journal of Botany 
An open vegetation-plot database for Southeast Asia: tool for ecology, conservation, and paleo-

conservation 
• Generating database of over 450 published rainforest plots from Southeast Asia to study the 

penetration and ecological abundance of Gondwanan floras into modern SE Asia and its paleo-
heritage 

• Using Tabula to extract data and R to taxonomically update all species names 
• Training and overseeing other students on project to increase dataset size 
• Poster presented at Midcontinent Paleobotanical Colloquium 2021 and Botany 2021 

First modern macrofloral reconnaissance of Paleogene Malay Archipelago  
• Morphotyping only plant macrofossils collected from Cenozoic Indonesia within last century 

using Adobe Bridge and Manual of Leaf Architecture 
• 45 fossil specimens collected in Tanjung Formation, South Kalimantan, Indonesian Borneo by 

Wilf and colleagues in 2014, 42 of which are fossil leaves  
• Two large seed fossils are tentatively assigned to Castanospermum but will be CT scanned for 

internal structures and lead to systematic and phylogenetic analyses 
• Some leaves express features characteristic of Melastomataceae, Myrtaceae, and Fabaceae 
• Recipient of Penn State Erickson Discovery Grant to fund project 

 



 
The National Museum of Natural History                                                                           Washington, D.C.               
Smithsonian NHRE REU                                                                                                    06/2021—Present 

Exploring Morphological Disparity in the Cassiduloida (Echinodermata, Echinoidea) using 
geometric morphometrics 

• Collected an image library of cassiduloid echinoids using public and private image sources 
from fossil and extant specimens from Jurassic to modern distributed in six continents  

• Digitized 2D landmarks and semilandmarks on test outline and petals to gauge burrowing 
efficiency and respiration in 7 cassiduloid clades using tpsDig and generated principal 
component analyses in RStudio 

• Discovered a selective extinction event of epifunal cassiduloids at the end-Cretaceous and a 
delayed partial experimentation into the morphospace in modern species 

• Oversaw and mentored high school researcher who collected images and digitized specimens 
• Won best undergraduate poster presentation by Paleontological Society at the Geological 

Society of America meeting in Portland, Oregon 2021 
 
International and Field Experiences 
 
The SSV Corwith Crammer                                                                                                      Caribbean Sea  
Biological Oceanography                                                                               12/2019—04/2020 

• Studied aboard a sailing research vessel for nine days in the Northern Caribbean 
• Conducted experiments on sediment characters, nutrient levels with depth, plankton density and 

diversity 
• Learned how to deploy and use hydrocasts, neuston nets, phytoplankton nets, and 

spectrophotometers 
• Capstone project on dissolved oxygen, chlorophyll-a, and phosphate levels throughout the water 

column 
 
Soltis Center, Corcovado National Park                                                                 Campanario, Costa Rica     
Tropical Field Ecology                                                                                                      12/2018—01/2019  

• Studied the ecological processes of several Costa Rican ecosystems  
• Used statistical methods to analyze lizard, paca, and bat populations  
• Designed and conducted individual project on the frequency of ectoparasites on bat species and 

their pregnancy status  
 
Natural Hazards in Thailand                                    Bangkok, Sukhothai, Phuket, Kanchanaburi, Thailand 
                                                                                                         May 2019 

• Studied how developing nations differ in response to natural disasters compared to the United 
States 

• Focused on the effects of earthquakes, tsunamis, and saltwater encroachment  
• Developed intercultural communication skills through collaboration with professors at Kasetsart 

University 
 
National Institute of Technology, Fukushima College                                                                    
Fukushima, Japan Renewable Energy, Disaster Mitigation & Nuclear to Renewable Transitions        
March 2019                                                                                                                         

• Competitively selected among 11 other global student leaders to join The GREEN Program: an 
international career focused experience in sustainable development 



 
• Gained exclusive access to top-tier renewable energy facilities, networked with industry 

professionals, and engaged in coursework focused on energy, economics, and policy taught by 
industry experts 

• Led an interdisciplinary team to develop an entrepreneurial business plan addressing a modern 
sustainability challenge connected to the Sustainable Development Goals (SDGs) 

 
Volunteer Work and Campus Involvement 
 
East End Hospice                    Southampton, NY 
Camp Good Grief Volunteer                08/2014 — 04/2020 

• Bereavement volunteer at Camp Good Grief, a camp dedicated to helping children properly 
grieve after the loss of a loved one 

• Volunteer speaker to 30-40 volunteers each year 
• Assisted in teaching proper grieving practices to groups of approximately 15 campers each year 
• Recipient of Helping Makes You Happy Award from 4 years at camp 

 
The Pennsylvania State University                University Park, PA 
Millennium Scholars Tutor and Mentor                                                                              09/2019—Present  

• Tutoring students in calculus, biology, Earth materials, and geochemistry 
• Tutor up to 7 hours a week through the Millennium Scholars Program  
• Selected to serve as STEM mentor to minority underclass Millennium Scholars 

 
The Pennsylvania State University                                                                                  University Park, PA 
Millennium Society and Millennium THON                09/2019—Present 
Vice President, Interim Treasurer, Fundraising Co-Chair                02/2021—Present 

• Millennium Society is a service-based club dedicated to STEM education and engagement 
• THON is the largest student run philanthropic event in the nation dedicated to generating funding 

for pediatric cancer victims and their families through the Four Diamonds Foundation  
• Projects include Nittany Greyhounds, and educating elementary students on the benefits of STEM  
• Organized and ran a plant sale fundraiser that earned over $350 for pediatric cancer and a book 

drive and book sale for the Midstate Literacy Center  
 
The Pennsylvania State University                                                                                  University Park, PA 
Minorities in the College of Earth and Mineral Sciences (MEMS)            04/2020—Present 
Secretary and Founding Member 

• Founded by underrepresented students in the College of EMS to provide a safe and uplifting 
space for all students, simplify the pathway to research, graduation, and graduate education, and 
increase networking and professional development opportunities for underrepresented students 

• Helped create a seminar series to hear from underrepresented faculty members, their research 
experiences and experiences as a minority researcher in academia 

• Assist in organizing bi-weekly meetings, study sessions, and social events.  
 

Awards, Scholarships, and Accomplishments 
 
The Pennsylvania State University                                                                                  University Park, PA 
                                                                                                                                             06/2018—Present 

Millennium Scholars Program                   



 
• The Millennium Scholars Program is a merit-based scholarship program designed to prepare 

students for the pursuit of doctoral degrees in science, technology, engineering, and 
mathematics (STEM) disciplines. The program fosters not only academic excellence but 
values and fosters community service and engagement. 

• Scholarships: Ira Lubert Scholarship, Millennium Scholars Scholarship, EMS Internal Merit 
Grant, Millennium Scholars Travel Grant (Japan, Caribbean, Geological Society of America 
Conference) 

 
Schreyer Honors College 

• Penn State honors program with the goal of academic excellence, global perspective, and 
leadership 

• Scholarships: Schreyer Academic Excellence Scholarship, Matthew J. Wilson Honors 
Scholarship 

 
The Presidential Leadership Academy  

• Leadership program within Schreyer Honors College led by dean of Schreyer and president of 
Penn State Eric Barron focused on leadership in complex situations and gray areas 

• PLA Academic Excellence Scholarship, PLA Travel Scholarship (Geoscience Field Camp) 
 

College of Earth and Mineral Sciences Academy of Global Experiences  
• EMS undergraduate award to recognize students exceling and fostering experiential learning, 

global experiences, service and integrity 
 
Erickson Discovery Grant 

• Penn State research grant for undergraduate independent project. Used to study the Tanjung 
fossil flora 

 
Student Engagement Network Grant 

• Penn State Scholarship funding international experiences. Funded for travel to Caribbean 
 
Hedberg Geoscience Academic Excellence Scholarship and Edwin Drake Geoscience Scholarship 

                    
Penn State Provost Scholarship                   
                                                                                 

Paleontological Society Best Undergraduate Poster Award                   09/2021 
• Awarded at Geological Society of America meeting at Portland, Oregon for work at 

Smithsonian  
         

Professional Society Memberships:  
• Botanical Society of America                05/2020—Present 
• Paleontological Society                08/2021—Present 
• Geological Society of America               08/2021—Present 

 


	Chapter 1   Introduction
	Chapter 2   Literature Review
	Chapter 3   Experimental Details
	Data source
	Scoring system
	Multivariate analyses
	Fossil applications

	Chapter 4   Results
	Anacardiaceae
	Annonaceae
	Apocynaceae
	Betulaceae
	Celastraceae
	Ericaceae
	Fabaceae
	Fagaceae
	Malvaceae
	Myrtaceae
	Rosaceae
	Rubiaceae
	Salicaceae
	Sapindaceae
	Noise features
	Multivariate analyses
	Top-1 PCA.
	Top-5 PCA.
	Top-5 PCA for genera.
	Cluster analysis.


	Chapter 5   Discussion
	Chapter 6   Conclusions
	Chapter 7   Reflections
	Appendix A  Data Availability
	BIBLIOGRAPHY

