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ABSTRACT 

Acute Lymphoblastic Leukemia (ALL) is a blood-based cancer that accounts for 30% of 

all pediatric cancer patients and is the second most common type of acute leukemia in adult 

cancer patients [1]. ALL is an aggressive form of cancer with an average survival rate of only 5 

years, suggesting that novel treatment options are needed. Treatment methods such as 

chemotherapy are often unsuccessful at treating ALL, as they are not specific and can lead to 

relapses [2]. Two therapeutics of interest are bispecific T cell engagers (biTEs) and tyrosine 

kinase inhibitors (TKIs), both of which address the specificity issues that arise with 

chemotherapy. BiTEs, also known as bispecific antibodies, are comprised of two monoclonal 

antibodies held together by a peptide linker. One end of the biTE binds to CD3+ T cells and the 

other end binds to CD19+ B cells. These can be used in cancer therapeutics to recruit immune 

cells to the site of cancer cells. TKIs work to inhibit their respective tyrosine from 

phosphorylating tyrosine residues and inhibit pathways downstream of the phosphorylation in 

the malignant B cells. There are ongoing clinical trials on treatment of Philadelphia Chromosome 

positive (Ph+) B cell ALL with the combination of TKIs and the biTE blinatumomab. One 

clinical trial investigated treating the ALL with blinatumomab and ponatinib and the other 

investigated blinatumomab with dasatinib. The rationale behind this combination is to inhibit 

kinase activity in malignant B cells while also promoting an immune response through activating 

T cell receptors and recruiting T cells [3]. However, previous studies have found that when used 

in combination, TKIs involved with the Src family kinases and biTEs have an antagonistic effect 

on cancer treatment [4, 5]. Through in vitro experimentation and mathematical modeling, it is 

possible to explore the antagonism mechanism of TKIs and biTE combination therapy. 
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Chapter 1  
 

Introduction 

1.1 Motivation and Background 

Cancer is a disease that affects millions of people worldwide and leads to 600,000 deaths 

in the U.S. each year alone [1]. Acute Lymphoblastic Leukemia (ALL) is the second most 

common type of cancer and stems from mutations in a patient’s bone marrow, blood, and 

extramedullary sites in bone. ALL affects mostly children, with only 20% of total cases in adults 

[6]. A major issue with current treatment options like chemotherapy, is the lack of specificity in 

targeting cancer cells. Patients treated with chemotherapy have strong side effects with a low rate 

of long-term success [7]. Because nonspecific medications are not successful at targeting ALL, 

other treatment options like immune cell-mediated therapy have become more relevant because 

they could potentially target cancer cells, more effectively.  

The purpose of this thesis is to create a stochastic model of T lymphocytes and malignant 

B cells dynamics during combination therapy with bispecific T cell engagers (biTEs) and 

Tyrosine Kinase Inhibitors (TKI). BiTEs fall under the classification of bispecific antibodies, 

which are created from two monoclonal antibodies linked together by a flexible peptide chain. 

BiTEs are designed so that one antibody side binds to the cancer cell through CD19+ cells, while 

the other side binds to CD3+ lymphocytes to recruit T cells to attack the malignant B cells [8]. 

TKIs are commonly used in the treatment of cancer and for the purposes of this thesis, I will 

mainly focus on comparing TKIs involved with the Src family kinases and in inhibiting the 

phosphorylation of lymphocyte-specific protein tyrosine kinase (LCK) such as dasatinib and 
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ponatinib to non-Src TKIs such as imatinib and nilotinib [4, 5]. Previous research suggested 

positive effects of Src TKIs when used in combination with blinatumomab for the treatment of 

Ph+ ALL [3]. However, recent studies have demonstrated antagonistic effects when using the 

combination of Src TKIs with blinatumomab, and their findings suggest this combination leads 

to a decreased efficacy in the biTE [9]. This thesis focuses on TKIs involved in inhibiting the Src 

family kinases and TKIs involved in inhibiting other pathways. Src specific TKIs used in this 

thesis include dasatinib and ponatinib, while non-Src TKIs include nilotinib and imatinib.  

1.1.1 Bispecific Antibodies 

Bispecific antibodies are engineered to bind to two different antigens or two different 

epitopes on the same antigen. For example, Blinatumomab is a BiTE antibody (bispecific T-cell 

engager antibody) that has Fv fragments, or in other words fusion molecules, from anti‐CD3 and 

anti‐CD19 arms joined [6, 10]. They are joined by a nonimmunogenic linker. Blinatumomab 

brings together cytotoxic CD3+ T cells and CD19+ B cells and results in T cell proliferation as 

well as B‐cell apoptosis [4, 11]. 
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Figure 1: Bispecific antibody schematic. 

1.1.2 Tyrosine Kinase Inhibitors 

Tyrosine kinase inhibitors inhibit their corresponding kinases from phosphorylating 

tyrosine residues of their substrates and then block the activation of downstream signaling 

pathways [12]. For example, one TKI called dasatinib inhibits the Src family kinases [13]. LCK 

is a member of Src family that plays a pivotal role in T-cell receptor signaling.  
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Figure 2: TKI schematic from Gabora et al. 2019 [14]. 

 

1.1.3 Combination Therapy of BiTEs and TKIs 

Acute Lymphoblastic Leukemia (ALL) is a blood-based cancer that accounts for 30% of 

all pediatric cancer patients and is the second most common acute leukemia in adult patients. 

ALL is an aggressive form of cancer, and the average survival rate is only 5 years.  There is an 

ongoing clinical trial on treatment of ALL with the combination of TKI and Blinatumomab. 

Previous studies have found that when used in combination, biTEs and TKIs have an 
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antagonistic effect on the treatment of cancer [9, 11, 13]. In this research, we purpose to develop 

a mathematical model to test two biological plausible hypotheses regarding the combination 

therapy with TKIs and biTEs. we will test whether the decrease in T cells proliferation is due to 

an antagonistic effect on the LCK activity or depletion of the malignant B cells.  

1.2 Objectives 

Through in vitro experiments, cell culture assays, and flow cytometry, we plan to find 

values related to the rates of growth, division, and decay of our T cells and B cells to feed into 

the model, estimate unknown parameters and find the key determinants of biTEs success of 

treatment. We will be able to determine the growth rate of T cells, death rate of T cells, growth 

rate of ALL cells, death rate of ALL cells through in vitro experiments and estimate other values 

of interest through the mathematical model. With Michaelis Mentin enzyme kinetics as a 

framework, we will be able to create a set of ordinary differential equations to model our 

biological systems. The experiments will serve to validate our model in order to check the known 

parameters and then determine the unknown parameters.  

Once our model is fully developed, we will be able to further validate it by performing in 

vitro experiments with CD3+ and CD19+ interactions in the presence of biTEs and TKIs in 

combination and separate, respectively. Through these in vitro experiments we intend to test our 

research question of whether the T cell deficit we see is due to a lack of phosphorylated LCK, a 

member of Src family kinase or the depletion of ALL cells. With this information, we will be 

able to better understand the data of clinical trials that have used TKIs and biTE in combination 

to treat ALL. We will be able to see if this combination leads to a more effective treatment or if 
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it causes an off-target effect, as we believe biTEs interfere with the TKIs ability to inhibit Src 

family kinase activity.  

1.3 Thesis Organization 

This thesis contains five total chapters. Chapter 1 explains the problem along with 

relevant background and motivation for the study. Chapter 2 describes the materials and methods 

used to perform each experiment contained in the thesis. Chapter 3 focuses on the computational 

model designed for the thesis to model the interaction between T-cells and malignant B-cells in a 

no treatment condition as well as treatment conditions. Chapter 4 uses experimental data to show 

the mechanism that can possibly rescue the antagonistic effect of Src TKIs on LCK 

phosphorylation inhibition through the pSTAT5 pathway. 
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Chapter 2  
 

Materials & Methods 

2.1 Cell Culture 

T lymphocyte Jurkat cells, Philadelphia chromosome (Ph1)-positive acute leukemia BV-

173 cells, and peripheral blood mononuclear cells (PBMCs) were utilized for the experiments in 

this thesis. All cells were cultured in tissue treated polystyrene petri dishes at 37oC and 5% CO2 

in an incubator with RPMI 1640 media with 1% penicillin streptomycin and 10% FBS. 

2.1.1 Jurkat Cell Culture Protocol 

Jurkat cells were cultured in RPMI 1640 media solution with 1% penicillin streptomycin 

and 10% fetal bovine serum (FBS). Between 1-2x106 cells were seeded into the petri dishes with 

15 mL of RPMI that was previously warmed to 37oC. The cells were checked daily and grown in 

the incubator until confluent. Once confluent, the contents of the petri dish were pipetted into a 

15mL centrifuge tube and centrifuged at 500g for 5 minutes. Post centrifugation, the supernatant 

was aspirated off and the cells were resuspended in media to be counted and passaged or seeded 

for an experiment.  
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2.1.2 BV1-73 Cell Culture Protocol 

BV-173 cells were cultured in RPMI 1640 media solution with 1% penicillin 

streptomycin and 10% FBS. An identical protocol to Jurkat was used to culture the cells. 

2.1.3 PBMC Cell Culture Protocol 

PBMC cells were cultured in Dulbecco's Modified Eagle Medium solution with 1% 

penicillin streptomycin and 10% FBS. The cells were grown with a similar protocol to the Jurkat 

cells and BV-173 cells and were centrifuged at 500g for 5 minutes to prepare the cells for 

passaging or seeding in an experiment. 

2.2 Cell Counting 

Cells were counted by hand using a hemocytometer. After aspirating the supernatant 

from the tube of centrifuged cells, the cells were resuspended in 1 mL of their perspective media. 

Then, 10 uL of the mixed solution was ejected into a 1.5 mL Eppendorf tube and 10 uL of trypan 

blue was mixed into the tube as well. The trypan blue stained dead cells blue, while live cells 

remained bright under the microscope. Then, 10uL of this solution was ejected into the 

hemocytometer and the cells were counted in the four corner boxes and center box. The result 

was divided by 5 (to obtain the average cells per 1mm2 square), multiplied by 2 (to account for 

the dilution factor) and then multiplied by 104 (to account for the total cells in the original 

sample). The result from this gave the total cells in the newly suspended 1mL solution of cells. 
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Figure 3: Cell counting with a hemacytometer. 

Cells are counted with a hemacytometer by counting all cells in the 1  mm x 1 mm squares labeled A-E. Cells 

touching the top or right of the square are counted while cells touching the bottom or left of the square are not. 

Trypan blue stains dead cells blue, so ant blue cells as seen in F are not counted. After counting the total cells, the 

number is divided by 5, then multiplied by the dilution factor and 10,000 cells/mL. This gives the number of cells 

per milliliter of sample. 

 

2.3 Cell Staining 

Cell staining was used to visualize T cells and B cells as well as identify other cell 

components in the experiments. Typically, 1mL of cells were added to Eppendorf tubes and 

centrifuged at 500 rcf for 5 min at 4ºC. The old media was then aspirated off the cells and 

blocking buffer was added for 10 minutes. All cells were blocked with 10uL Fc block added to 

lmL of 3% BSA in 1XPBS unless otherwise specified. After 10 minutes, all tubes were 

centrifuged at 500 rcf for 5 min at 4ºC. Then, 2uL of primary antibodies were added to 200uL of 

3% BSA in 1XPBS and added to the cells. The solution was then incubated covered with foil for 

20 minutes at 4ºC and then brought to room temperature for 15 minutes. The solution was 
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washed with 3 times with 1XPBS. After each wash, the cells were centrifuged, and the 

supernatant was aspirated off.  

 

2.4 Flow Cytometry 

Following the cell staining assay, 100uL of 3% BSA was added to each tube to prepare 

for flow cytometry. BD Acuri was used to run the flow cytometry run with limited and 10uL 

volume, fluidics was set to “medium”, the sample was loaded into the probe, and the “run” 

button was clicked.  

For flow cytometry, a negative control with no staining was added first and then the 

stained conditions were loaded after to compare mean fluorescent intensity of stained cells. A 

line could be drawn onto the graph to compare control to experimental conditions and see 

differences in stained versus no stained populations. For live/dead analysis, a circle could be 

drawn around cells in the upper right corner of the FSCA versus SSCA plot and the percentage 

of live cells could be quantified, as live cell populations are larger in size compared to dead cells. 

 

2.5 Drug Treatment Cell Count Assay 

A drug treatment cell count assay was performed to test the effects of combination 

therapy on T cell and B cell growth. PBMC and BV173 cells were used in the experiment. In this 

experiment drug conditions included: no treatment, blinatumomab, blinatumomab + dasatinib, 
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and blinatumomab + nilotinib. In total 5,000 PBMC cells were added to 10,000 BV173 cells on 

day 0 and cocultured. The treatment concentrations for dasatinib, nilotinib, and blinatumomab 

were 10nM, 130nM, and 0.1 ng/mL respectively. Each condition was treated with the drugs of 

interest and incubated in RPMI with 1% penicillin streptomycin and 10% FBS in the cell 

incubator. Starting on day 0 a sample of the cells were stained for CD3 and CD19 and then 

quantified using flow cytometry. Cell counts were then taken each day for 6 days total with each 

treatment condition.  

2.6 Drug Treatment Western Blot Assay 

2.6.1 Cell Lysis Extraction 

A drug treatment western blot assay was performed with the addition of interleukin 2 

(IL2), interleukin 7 (IL7) and/or interleukin 15 (IL15) to test the effect of IL2 on the TKI 

conditions. The conditions tested were with an unstimulated negative control of only Jurkat cells 

as well as cells stimulated with CD3/CD28 magnetic beads in an untreated condition as well as 

treated with ponatinib, dasatinib, nilotinib, and imatinib. These six conditions were replicated 

and treated with interleukin as well to form 12 total conditions. 

Each condition used 2 million Jurkat cells that were placed in serum starved media for 

four- or sixteen-hours pretreatment. In total 24 million cells were left with no stimulation, while 

the remaining 20 million were stimulated with CD3/CD28 magnetic beads after serum starving. 

The beads were prepared by collecting 10 uL of beads to an Eppendorf tube with RPMI and 

vortexing for a few seconds. The tube was then placed on a magnet for 5 minutes and the RPMI 
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was aspirated off. The washing process was then repeated two times and the final beads were 

diluted in 550uL of RPMI.  

After serum starving, 10uL of beads per 2 million cells were added for the conditions that 

required stimulation and incubated for 2 hours and then drugs were added for 2 more hours. 

After stimulation, each condition was treated with the drugs and/ or IL2, IL7, IL15, or ILC and 

incubated for 2 hours. The treatment concentrations for ponatinib, dasatinib, nilotinib, imatinib, 

and IL2 were 40nM 10nM, 130nM, 450nM, and 100ng/mL respectively. 

During treatment, a cell lysis buffer was prepared with 100uL lysis buffer, 900uL PBS, 

2uL PMSF protease inhibitor, and 4uL PMSFA. After the two hours of treatment, each condition 

was centrifuges in Eppendorf tubes for 5 min at 500 g, then the supernatant was aspirated off and 

50uL of the buffer was added to each cell pellet. The tubes were incubated in 4ºC for 30 minutes, 

vortexing every 10 minutes to ensure proper lysing. After 30 minutes, each tube was centrifuged 

at 1600 rcf for 15 min, and the supernatant was aspirated off. 

2.6.2 Bicinchoninic Acid (BCA) Protein Assay 

To see the concentrations of the lysis, a Bicinchoninic acid (BCA) protein assay was 

performed using a Thermo Fisher BCA kit. In the kit 9 standards were prepared and labeled A-F. 

In vial A, 300uL of stock was added. In vial B, 375uL stock was mixed with 125uL PBS. In vial 

C 325uL of stock was added with 325uL PBS. In vial D 175uL of vial B was added with 175uL 

PBS. In vial E 325uL of vial C was added with 325uL PBS. In vial F 325uL of vial E was added 

with 325uL PBS. In vial G 325uL of vial F was added with 325uL PBS. In vial H 100uL of vial 

G was added with 400uL PBS. In vial I 100uL PBS was added.  
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To prep each standard and experimental sample, 5uL of the sample was added to a 96 

well plate with 100uL of the working reagent (WR). This was repeated for a total of 2 replicates. 

The plate was incubated at 37 degrees Celsius for 30 minutes. All samples were cooled to room 

temperature and read using Envision manager and a 562nm wave absorbance.  

The software read the plate and output a csv file. To standardize all samples the reading 

from the blank was subtracted from all samples and then standard curves were created in 

Microsoft Excel. Using the standard curve, the experimental points were fit, and the protein 

concentrations were determined.  

2.6.3 Western Blot 

To prepare for the western blot, 1x running buffer was made in advance with 50mL 

running liquid in 950mL milli-Q water and 1x transfer buffer was made with 50mL transfer 

liquid in 950mL milli-Q water. 

Calculations for each experimental sample were made using the BCA data to result in 

approximately 10ug protein in 20uL of sample buffer and sample volume. A 2x lysis buffer was 

made with 500uL 1xPBS and 500uL NuPAGE LDS sample buffer. The buffer was added to each 

sample for a total volume of 40uL. Each tube was transferred to a 80ºC bath for 10 minutes to 

denature the protein. Using a 4-12% NuPAGE gel, the strip and comb were gently removed and 

put in the containment system with the comb side up. Running buffer was added to cover the gel 

and each well was washed using a pipette. The ladder was loaded to the first cell with a volume 

of 15uL and the rest of the samples were loaded in in volumed of 15uL each. The gel was run in 
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the 4ºC fridge, the lid was attached, and electrodes were placed on the lid. A 150V was applied 

with 3.00A and 300W for 2 hours. 

After 2 hours, half of the liquid was removed from the device and 3 absorbent pads were 

placed in transfer buffer in an empty pipette tip container. A 0.45 nitrocellulose membrane filter 

was placed in the transfer buffer with the absorbent pads. The device was opened, and the gel 

was carefully cut out and placed on top of a sponge and filter in a western blot transfer box. The 

membrane was placed on top of the gel to ensure proper transfer and all bubbles were rolled out 

and sponges were added on top until a tight seal could be made in the box. The box was then 

loaded into the device used for the initial western blot run and the transfer buffer was added to 

submerge the device. In the 4ºC, the blot ran for 2 hours with 150V, 3.00A and 300W applied. 

The blot was then removed, and tweezers were used to delicately remove the membrane. Then, 

5mL of 5% BSA in TBST was added to the membrane in the empty pipette tip box and left 

covered on the shaker for 1 hour.  

While waiting for the blocking, 2uL of primary antibodies were added to 5mL of the 5% 

BSA TBST solution. This primary antibody solution was added to the membrane and incubated 

on the shaker in the 4ºC fridge overnight. The next morning, the membrane was washed 3 times 

with TBST for 15 minutes each time. Secondary antibodies were added for 1 hour at room 

temperature and then washed 3 times with tween 20 (TBST) for 15 minutes to wash the 

nitrocellulose membrane. The chemiluminescent detection solution was made by adding 1mL of 

Part A to 1mL of Part B. After adding the detection solution to the blot for 1 minute, the blot was 

imaged. After imaging the blot, it was stripped for 30 minutes in stripping buffer, washed with 

dH2O for 15 minutes, and washed with TBST for 15 minutes. Then the blocking, staining, and 

imaging protocol were repeated for all antibody conditions. 



23 

 

Figure 4: Western blot schematic [15] 

Figure 4 shows an overview of performing a western blot, similar to the process describes above in the text. 
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2.7 Statistical Analysis 

Statistical analysis is described in the individual sections for the specific experimental 

data collected. 

 

Chapter 3  

 

Modeling T cell and B cell Dynamics Without and With Treatment 

3.1 Michaelis-Menten Enzyme Kinetics 

Michaelis-Menten enzyme kinetics are often used to explore the reactions that occur 

between and enzyme and substrate in a reaction where the enzyme and substrate form a complex 

and regenerate into the original enzyme and form a product [16]. A typical equation of 

Michaelis-Menten kinetics is shown below: 

 

𝐸 + 𝑆
𝐾1
→  𝐸𝑆 

𝐾2
→  𝐸 + 𝑃 

Equation 1 

𝐸 + 𝑃 
𝐾3
→ 𝐸𝑆 

𝐾4
→  𝐸 + 𝑆  

Equation 2 

 

In this equation E represents the enzyme, S represents the substrate, ES represents the 

enzyme substrate complex, and P represents the product. There are various rates associated with 

the forwards and backwards reactions, where K1 is the rate of complex formation from reactants 

E and S, K2 is the rate of product formation from the complex, K3 is the rate of the reverse 
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catalysis reaction, and K4 is the rate of complex dissociation. There are a few assumptions when 

using Michaelis-Menten such as a closed system, fast binding, slower product formation, starting 

product concentration of zero, a greater concentration of substrate in comparison to enzyme, and 

enzyme only existing in its original form and the complexed form [17, 18, 19]. Michaelis-

Menten kinetics have been used for a variety of biomedical applications such as modeling cell 

population dynamics over time [20].  

The mechanism of action of biTEs acts to bring CD3+ T cells together with CD19 B cells 

to form a complex and stimulate T cell proliferation to target malignant B cells circulating in a 

patient’s system. Because of this, a system based on Michaelis Menten kinetics was developed to 

predict cell outcomes with the introduction of biTEs. 

 

 

Figure 5:  T Cell CD19 Cell Interaction with Introduction of biTE. 

When a biTE is introduced to the system, a CD3+ T cell (T) and CD19 B cell (19) are joined together to form a 

ternary complex which can result in CD19 apoptosis and T cell proliferation. Before linked, T cells and CD19 cells 

have decay rates and CD19 cells have birth rates. 
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Through developing a schematic model of potential outcomes with biTE intervention, a 

series of differential equations were developed to better understand the effects on T cells, CD19 

Cells, and the T cell- CD19 complex as shown below: 

 

𝑑𝑇

𝑑𝑡
= 𝐾𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛[𝑇19] − 𝐾𝑑𝑒𝑐𝑎𝑦[𝑇] − 𝐾𝑜𝑛[𝑇][19] + 𝐾𝑜𝑓𝑓[𝑇19] Equation 3 

𝑑19

𝑑𝑡
= −𝐾𝑜𝑛[𝑇][19] + 𝐾𝑜𝑓𝑓[𝑇19] + 𝐾𝑏𝑖𝑟𝑡ℎ[19] − 𝐾𝑑𝑒𝑎𝑡ℎ[19] − 𝐾𝑘𝑖𝑙𝑙[19] Equation 4 

𝑑𝑇19

𝑑𝑡
= 𝐾𝑜𝑛[𝑇][19] − 𝐾𝑜𝑓𝑓[𝑇19] − 𝐾𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛[𝑇19] Equation 5 

In this system of ordinary differential equations, there are various rates associated with 

each outcome. The equation related to T cell change over time is related to the Kdivision or 

proliferation rate of T cells post complex, as well as the decay rate of T cells and the Kon and Koff 

rates of complex formation and disassociation. The equation related to CD19 B cell chance over 

time is related to the Kon and Koff rates of complex formation and disassociation as well as the 

Kbirth birth rate of CD19 cells, Kdeath decay rate of B cells and Kkill rate of B cells killed post 

complex. The equation related to the T-19 complex relates to the Kon and Koff rates of complex 

formation and disassociation as well as the Kdivision proliferation rate of T cells post complex 

disassociation. 
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3.2 MATLAB Model Development 

Using the equations developed through the model of biTE mechanism of action, a 

computational model was developed in MATLAB. A function was created to encompass the 

rates of T cell, B cell, and complex formation. 

 

Figure 6: MATLAB function for modeling T cell B cell and complex rates.  

In the figure, the MATLAB code is shown for modeling the three differential equations of interest. Each coeff() 

corresponds to a rate constant K as previously described and y(1), y(2), and y(3) correspond to the concentrations of 

T cells, B cells, and complexes respectively. 

 

 With the model, a timespan could be input by a user as well as estimates for each K rate 

constant, and then plotted into a graph with a curve for T cell, B cell, and complex 

concentrations over time. A sample run through of the model is demonstrated in the below 

figure. 
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Figure 7: Sample script run through and output. 

A user can input initial conditions for complex, T cell, and B cell count as well as put in K values of interest to 

study. Then the script feeds these numbers into the ODE function and plots the results. 

3.3 MATLAB Model Order of Magnitude Study 

 With the MATALB model created, it was of interest to determine how sensitive each K 

value was in the model. Performing a sensitivity analysis would help show which K values 

would be the most important and lead to the largest changes in the shape of the growth curves. 

By determining the most and least sensitive variables, it would show which variables were most 

important to approximate with biological values and in vitro experimental values. This would 

also show which K values were less important in determining the shape of the outputted growth 

curves. By knowing exactly which K values were more and less sensitive to changes in value, we 

would be able to better understand the model and better think about how we could fit it to 

experimental data later on. 

 Starting off, Farnaz has created a script in MATHEMATICA with the ordinary 

differential equations and used dynamics to create a graph where each K value corresponded to a 
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slider bar. Each slider bar could be moved to change the K value and then re visualize the graph. 

In the beginning stages this type of output was useful to see general trends from changing K 

values and the script is referenced in the appendix. After looking at the MATHEMATICA 

model, an order of magnitude study was used to determine sensitivity of the K values by 

changing each by an order of 1. Additionally, more order of magnitude studies were performed 

to see if changing multiple K values by an order of 1 would lead to synergistic or additive effects 

on the graph shapes. These additive sensitivity analyses were used with one variable that had 

shown a change in graph shape in addition to the other K values for an iterative approach. 

3.4 Results  

The first sensitivity analysis changed each K value by an order of 1 compared to the 

control. Values for the control were established through joint efforts with Farnaz to approximate 

biological values for certain values related to T cell and B cell growth and decay, and others 

were approximated through looking at the MATHEMATICA model with the sliders. 
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Figure 8: Order of magnitude study. 

Through changing the K values by an order of 1, graphical output showed any differences or similarities between the 

T cell, B cell, and complex curves labeled as T-cell, CD-19 cells, and T-CD19 Complex respectively. 
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Figure 9: Order of magnitude study for synergistic affects with Kon 

Through changing the K values by an order of 1 in addition to Kon being changed by and order of 1, graphical 

output showed any differences or similarities between the T cell, B cell, and complex curves labeled as T-cell, CD-

19 cells, and T-CD19 Complex respectively. 
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Figure 10: Order of magnitude study for synergistic affects with Kk. 

Through changing the K values by an order of 1 in addition to changing Kk by an order of 1, graphical output 

showed any differences or similarities between the T cell, B cell, and complex curves labeled as T-cell, CD-19 cells, 

and T-CD19 Complex respectively.  

 

3.5 Discussion 

From the order of magnitude sensitivity studies, it appeared that the most sensitive K 

values on their own were Kon and Kk, as there was a visual change in the growth curves 

visualized. When Kon and Kk were changes by an order of 1 in addition to another variable, 

there were visual differences with the Kon and Kk combination as well as the Kk and Kd2 
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combination, showing how changing multiple K values simultaneously could change the curve 

shapes.  

Through the creation of a model to simulate the mechanism of action of biTEs, it is 

possible that in vitro data could be fitted, and K values could be estimated to come up with an 

accurate representation of what happens with biTE intervention in ALL. Additionally, this model 

could be fitted to data from combination therapy to see how various rates change with the 

addition of TKIs into the system, like what is shown later in this thesis. From the model alone, it 

can be interpreted that the Kon or on rate of T cell B cell complex formation the Kk kill rate of B 

cells and Kd proliferation rate of T cells are the reason different TKIs lead to changes in the 

dynamics of T cells and B cells post combination therapy treatment. 

Another way to interpret the results of the order of magnitude study could be to analyze 

the quantitative changes from graph to graph. Using a quantitative approach could add a robust 

way to compare the differences between conditions and add a statistically meaningful 

interpretation in addition to the visual one that can be seen through the graphs.  
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Chapter 4  

 

The Effect of Category of TKI on Efficacy and Model 

4.1 Background and Motivation 

 Previous research showed the antagonistic effects caused by Src TKIs in combination 

with biTE and synergistic effects caused by non Src TKIs in combination with biTE [9]. From 

experiments run by the lab and ones included in this thesis, it was hypothesized that TKIs 

involved with inhibiting the Src family kinases had antagonistic effects on T cells in comparison 

to TKIs involved with inhibiting other classes of kinases due to off target effects. One potential 

off target effect of the Src TKIs could result in the inhibition or decrease of T cell growth and 

proliferation. In order to address a decreased growth of T cells some studies have looked into 

supplementing with interleukins. One previous study looked into supplementing CAR-T cell 

therapy with IL2, IL7 and IL15 to increase CD4+ T cell activation [21]. Through this study, 

researchers found that the introduction of interleukins regulated genes in TCR, JAK/STAT, 

MAPK, AKT, and PI3K-AKT signaling, all of which play roles in cell growth and proliferation. 

 For these reasons it was of interest to study how combination therapy of different TKIs 

with biTE compared to biTE treatment and no treatment conditions, as well as explore the effects 

of interleukin supplementation. 
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4.2 Src TKI Potential to Inhibit Pathway Through pSTAT5 

As mentioned, TKIs act to inhibit the phosphorylation of tyrosine kinases and are 

involved with inhibiting various pathways such as JAK/STAT, also known as Janus Kinase/ 

Signal Transducer and Activation of Transcription [12]. Previous work suggested that STATs 

can be activated by growth factor receptors as well as members of the Src family kinases such as 

c-Src [22]. Work has also shown that STAT3 and STAT5 play a role in acute and chronic 

leukemia, and that STAT5 is a target for some Src specific TKIs [23]. Because STAT5 activation 

promotes CD4+ and CD8+ T cell growth and proliferation, it is possible for TKIs involved with 

inhibiting phosphorylation of STAT5 to also decrease rates of T cell growth [24]. 

4.3 Cell Count Assay and Model Fitting Background 

A cell count combination treatment assay was carried out to collect data on the growth or 

decay of T cells and B cells over time when treated with biTE and combination therapy. The 

objective of these experiments was to collect data that could be fitted to the model created in 

chapter 3 and if the model was a good fit for the data. The cell count assay, described in the 

methods section comprised of 4 conditions, no treatment, biTE treatment, combination treatment 

with a non Src TKI, and treatment with a Src TKI. These conditions were designed through using 

co-cultured PBMCs and BV173 cells stimulated with dynabeads udder no treatment, treatment 

with blinatumomab, blinatumomab plus nilotinib and blinatumomab plus dasatinib. Nilotinib is a 

TKI that is not play a role in inhibiting Src family kinases, while dasatinib does. Nilotinib is a 

second generation TKI designed to inhibit the BCR-ABL protein, a protein believed to cause 
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Ph+ ALL [25]. Dasatinib is a Src inhibitor that has been widely studied and is approved for the 

treatment of PH+ ALL and also inhibits BCR-ABL [26]. 

With the data obtained from the experiments, curve fitting of the model generated in 

chapter 3 was performed. This curve fitting was particularly of interest to see how the dynamics 

of T cells and B cells would change or stay the same across treatment conditions and see if we 

could fit our theoretical model to the experimental results. A first approach to fitting the data was 

using Maximum Likelihood Estimation (MLE) with a Poisson distribution. This was potentially 

of interest because the data collected from in vitro experiments looked like they could follow a 

Poisson distribution. Additionally, some researchers have studied cell proliferation dynamics and 

fitted Poisson distribution models to the results, which led to our potential interest in doing 

something similar. Full results of my coding efforts are in the appendix. 

 Ultimately, it was of interest to fit the initially developed model to the data. Through 

adding in a logistic growth term to the initial set of differential equations, a model could be fit. 

Through using MLE values were estimated for the K values in the model, and the division rate of 

T cells with the Src TKI treatment and BiTE treatment were compared. 

4.4 Cell Count Assay and Model Fitting Results 
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Figure 11: Combination treatment effect on growth of T cells and B cells. 

Figure 11 shows the effects of combination therapy on PBMC derived T cells and BV173 B cells that were 

cocultured together as described in the methods section. (A) T cells (blue) and B cells (orange) with no treatment 

were measured over 5 days. (B) The effect of therapy with blinatumomab on T cells (blue) and B cells (orange) was 

measured over 5 days. (C) The effect of therapy with blinatumomab and nilotinib on T cells (blue) and B cells 

(orange) was measured over 5 days. (D) The effect of therapy with blinatumomab and dasatinib on T cells (blue) 

and B cells (orange) was measured over 5 days. 

 

 Through therapy on cocultured B cells and PBMC derived T cells, the effects of no 

treatment, BiTE treatment (blinatumomab), and combination treatment with a Src TKI 

(dasatinib) and non Src TKI  (nilotinib) were measured.  Through no treatment, there was a 

relatively constant number of T cells over 5 days and a constant increase in B cells. With BiTE 



38 

treatment, there was an overall increase in T cells and decrease in B cells over 5 days. The 

combination treatment with the non Src TKI nilotinib, there was an overall increase in T cells 

and decrease in B cells like the BiTE treatment with a slightly increased growth and decay of T 

cells and B cells respectively. The combination therapy with the Src TKI dasatinib led to a 

decrease in T cells and an increase in B cells over the 5-day period.  

 

Figure 12: ALL treatment curve fitting with blicocyto. 

The data obtained from the cell count assay was curve fitted using MLE with a Gaussian fit in Matlab as described 

above and the Kd division rate of T cells was determined to be close to 0.7 per day for the BiTE blinatumomab 

treatment. 
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Figure 13: ALL treatment curve fitting with blicocyto and dasatinib therapy. 

The data obtained from the cell count assay was curve fitted using MLE with a Gaussian fit in Matlab as described 

in the section above and the Kd division rate of T cells was determined to be close to 10^-14 per day for the BiTE 

TKI combination therapy with blinatumomab and dasatinib. 

Through curve fitting the cell count data, it was found that the Kd division rate of T cells 

with the BiTE treatment of blinatumomab was 0.7 per day compared to the BiTE combination 

therapy with blinatumomab and dasatinib, where the Kd division rate of T cells was 10^-14 per 

day. This decrease in estimated Kd by curve fitting further suggests the antagonistic effects of 

Src TKIs on combination therapy with a BiTE. 
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Figure 14: Curve fitting of T cell data with Poisson distributed MLE in Matlab. 

 

Figure 15: Curve fitting of B cell data with Poisson distributed MLE in Matlab. 
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 Through using Maximum Likelihood Estimation in Matlab with a Poisson distribution, 

the fitting parameter of lambda, also known as the average number of events that occur over an 

interval. When lambda is small, there is a steep incline or decline in a curve, when it is large, 

there is a shallower shape to the curve [27]. From fitting the experimental data, the control T cell 

had an estimated lambda value of 2.7 and a B cell lambda value of 3.33. The blinatumomab T 

cell had an estimated lambda value of 3.2 and a B cell lambda value of 0.42. The blinatumomab 

plus nilotinib T cell had an estimated lambda value of 3.1 and a B cell lambda value of 0.99. The 

blinatumomab plus dasatinib T cell had an estimated lambda value of 1.6 and a B cell lambda 

value of 2.3. This suggests, the rate of T cell growth in the blinatumomab plus dasatinib 

condition is lower than the other conditions as the lambda value is the lowest. The curve fitting 

also suggests the blinatumomab plus dasatinib condition has a higher growth rate compared to 

the blinatumomab plus nilotinib and the blinatumomab conditions, as the lambda value is higher. 

The graph also shows how the blinatumomab plus dasatinib condition has the greatest rate of 

growth for B cells compared to all conditions.  

 

 

4.5 Western Blot to Test IL Rescue Background 

 In order to test whether Src related TKIs contribute to off target effects, a series of 

Western Blot experiments were carried out on Jurkat cells to see if phosphorylation of LCK was 

impacted by the category of TKI. In some experiments, a series of interleukins (IL) were added 
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to attempt to rescue any off-target effects caused by the TKIs. Candidates for the IL rescue 

experiments included IL2, IL7, IL15, and a combination of the three called ILC.  

 IL2 was studied because of its role in stimulating cell proliferation of immune cells 

including T cells. IL2 is typically produced by activated T cells, dendritic cells and B cells [28].  

IL7 was studied because of its role in stimulating cell proliferation of T cells in addition to other 

immune cells. IL7 was also of interest to study because immune cells do not typically produce a 

lot of it [29]. IL15 was studied because of its role in stimulating T cell proliferation. IL15 is 

known to be produced by dendritic cells, monocytes and epithelial cells and plays a role in 

maintaining homeostasis of the immune system [30]. A combination of the three was also 

studied because the three are involved in activating pathways that promote the survival and 

proliferation of immune cells. One of the major pathways involved with this is the JAK/STAT 

pathway, which was studied through staining for pSTAT5 in the experiments below [23]. 

Optimization assays for best time dosing of interleukin in addition to TKIs were 

performed by Farnaz Naeemikia. Farnaz played a crucial role in data collection for the Western 

Blots displayed below in figures 10-13 and helped me run the IL2 rescue assay. More Western 

Blots were run by me independently, but due to storage issues and nonspecific binding, they are 

not in the results section. One replicate of a 2 hour treatment IL2 rescue has been moved to the 

appendix section rather than the results to show my independent experiment. The Western Blots 

were analyzed in FIJI by me and Mikayla and we created the bar graphs below. All figures were 

designed independently although the data Mikayla and I represent is the same. 

To quantify normalized ratios, the intensity of each sample was quantified using FIJI and 

normalized to the loading controls, then the values generated were divided by the value for the 

negative control. 
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4.6 Western Blot to Test IL Rescue Results 

 

 

Figure 16: Treatment length optimization assay.  

(A) Three western blots were performed with Jurkat cells treated with Ponatinib, Dasatinib, Nilotinib and Imatinib 

either for 30 minutes, 2 hours or 4 hours. (B-D) Western blot data was analyzed and normalized to the loading 

control as well as the negative control and plotted as pLCK normalized ratio versus sample 

condition. 

In the optimization assay shown in Figure 10, the greatest visual difference between blots 

was seen in the hour treatment. Graphs in B-D support this visual difference between the blots 

and show the most differences between the conditions. There was a potential transfer issue in the 

30 minute blot from the gel to membrane. The blot data suggests an overall trend of Src TKI 

with a lower normalized  pLCK ratio compared to non Src TKI and positive control. 
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Figure 17: IL2 rescue experiment. 

In the IL2 rescue experiment, pLCK and pSTAT5 were measured against a loading 

control of LCK. Without IL2, there was a lower normalized pLCK ratio for Src TKIs compared 

to the positive control and Nilotinib, but not Imatinib. With IL2, there was also an increase in 

pLCK for all conditions other than nilotinib. Without IL2, there were similar normalized 

pSTAT5 ratios, with a slightly lower ratio for ponatinib and dasatinib compared to nilotinib and 

imatinib. With IL2, there was an increased pSTAT5 ratio across all conditions. 
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Figure 18: IL7 rescue experiment. 

 In the IL7 rescue experiment, pLCK and pSTAT5 were measured against a loading 

control of LCK. Without IL7, here was a lower normalized pLCK ratio for the Src TKIs 

compared to positive control and compared to nilotinib and imatinib. With the addition of IL7, 

there were increased levels of pLCK for all conditions other than negative control. Without IL7, 

there were similar normalized pSTAT5 ratios across all conditions. With the addition of L7, 

there were increased normalized pSTAT5 ratios across all conditions. 
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Figure 19: IL15 rescue experiment. 

 In the IL15 rescue experiment, pLCK and pSTAT5 were measured against a loading 

control of LCK. Without IL15, there was a lower normalized pLCK ratio for the Src TKIs 

compared to the positive control and nilotinib and imatinib conditions. With the addition of IL15, 

there was an increased measurement of pLCK for all conditions other than the negative control. 

Without IL15, the normalized pSTAT5 ratio was slightly lower for ponatinib and dasatinib and 

nilotinib compared to positive control and imatinib. With the addition of IL15, there was an 

increased normalized pSTAT5 ratio across all conditions. 
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Figure 20: ILC rescue experiment. 

In the ILC rescue experiment, pLCK and pSTAT5 were measured against a loading control 

of LCK. Without ILC, there was a lower normalized pLCK ratio for the Src TKIs compared to 

positive control and nilotinib and imatinib. With the addition of ILC, there was an increase in 

normalized ratio of pLCK for all conditions. Without ILC, the normalized pSTAT5 ratio was 

lower for ponatinib and dasatinib compared to nilotinib and imatinib and positive control. With 

ILC, there was an increased normalized pSTAT5 ratio across all conditions except for the 

positive control. 
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4.7 Discussion 

 Through the cell count assay with combination therapy, there are visual differences 

between the Src TKI combination therapy and the non Src combination therapy and biTE only 

treatment. In the biTE only treatment and the biTE plus nilotinib treatment, there were increases 

in the T cell growth over the course of 5 days compared to the control. This suggests that both 

biTE in its own and in combination with nilotinib leads to a greater amount of T cell growth and 

proliferation. With these two treatments, there was also a decrease in malignant B cells over time 

in comparison to the control. This would suggest that these treatments lead to a greater inhibition 

of B cell proliferation. On the other hand, the combination of biTE and dasatinib led to a 

decrease in T cells over time and an increase in malignant B cells over time in comparison to the 

control. This would suggest the combination therapy with dasatinib has antagonistic effects. The 

modeling data supports this as the T cell division date decreased from the biTE condition to the 

biTE plus dasatinib from 0.7 per day to 10^-14 per day. This further suggests how the 

computational model supports the results found in in vitro experimentation, and that the division 

rate of T cells is impacted negatively by the Src TKIs in comparison to the non Src TKIs. 

Additionally, the data suggests a decrease in B cell killing with the Src TKI in comparison to the 

control and non Src TKI, which agrees with the order of magnitude study, showing the Kk or 

killing rate of B cells as a key indicator of T cell and B cell dynamics.  

 The curve fitting code was designed to fit the data to the model and better understand 

how the T cell and B cell dynamics changed due to the type of treatment given to the cells. 

Through better optimizing the code, a better fit could be made to fit the parameters and simplify 

the model further. Further using the computational model to study how dynamics are affected by 
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the type of combination treatment will lead to a more mechanistic approach to potentially 

support the hypothesis that Src TKIs, when used in combination with biTE, cause a decrease in T 

cell proliferation (or cause off target effects on T cells) as well as decrease B cell killing, 

ultimately leading to an overall decrease in T cells and an increase in B cells. 

Ultimately, the western blot data suggests that IL2, IL7, IL15, and ILC have effects on 

increasing pLCK and pSTAT5 activation. To show statistical significance more replicates need 

to be run, but examining the data we see an increase in pLCK and pSTAT5 activation with added 

interleukin across most experiments. 

While the results appeared to agree with the idea that interleukin supplementation 

supports increased activation of the pSTAT5 pathway and phosphorylation of LCK, there is 

some room for error in the experiments. One source for potential error with the staining of 

western blots was potential for nonspecific binding or insufficient blocking time, as this could 

lead to artifacts in the final blot imaging. Additionally, one source of potential error was not 

leaving enough time for primary and secondary antibodies to bind, which could lead to a less 

bright band in the final image of the blot. Another reason some blots may have not been as bright 

as others could have been a transferring error, or not allowing enough time for the blot to transfer 

onto the membrane completely. In order to limit the amount of error, the blots could be repeated, 

and care could be taken to ensure these mistakes do not happen. Additionally, the western blots 

were performed on Jurkat cells, which are known to have different properties from PBMC 

derives T cells. Therefore the results of these experiments can not be directly applied to PBMC 

derived T cells, and the experiments should be repeated on T cells isolated from PBMCs. 
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Chapter 5  

 

Conclusions and Future Directions 

5.1 Summary of Findings 

Through the model creation, a set of ordinary differential equations were derived and a 

model in MATLAB was created. Through this model, the order of magnitude study showed 

that the Kon value of T cell CD19 complex formation and the Kk value of CD19 cell killing. 

This study suggests the Kon and Kk values are most indicative of the dynamics and are 

sensitive parameters.  

Through the multiple parameter sensitivity analysis studies, it was found that the 

combination of Kon value of T cell CD19 complex formation and the Kk value of CD19 cell 

killing as well as the Kk value of CD19 cell killing and Kd2 value of T cell proliferation. 

This suggests that these combinations could be synergistic in nature and the combined effects 

of the changes K values cause a greater change in dynamics compared to altering the 

individual parameters. 

Through in vitro experiments, the cell growth of T cells and CD19 cells were observed 

over 5 days. Without treatment, there was a relatively constant amount of T cells and a linear 

appearing increase in CD19 cells. Through BiTE treatment with blinatumomab and 

combination treatment with blinatumomab and nilotinib, there was an increase in the number 

of T cells and a decrease in the amount of CD19 cells.  Through combination treatment with 

blinatumomab and dasatinib, there was a decrease in T cells and an initial increase in CD19 
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cells. This suggests positive effects when BiTE is used as well as combination treatment with 

a nilotinib, but antagonistic effects when a Src TKI such as dasatinib is used in combination 

treatment.  

Through curve fitting, it was apparent that the treatment with dasatinib and 

blinatumomab led to a decreased T cell division or proliferation rate of Kd in comparison to 

the blinatumomab condition. This further suggests the idea that the combination therapy with 

a Src TKI contributes to antagonistic effects on T cells. In summary, these curve fitting 

results support the hypothesis that Src TKI combination therapy with biTE leads to a 

decrease in T cell proliferation and an increase in B cell growth, and that both factors are 

reasons for the difference in effects of the Src TKI combination therapy and non Src TKI 

combination therapy. 

Through western blot experiments, it was found that the Src TKIs have decreased pLCK 

and pSTAT5 activity compared to other TKIs and BiTE when no interleukin is added. It was 

also found that the addition of interleukins can rescue the effects of the Src TKIs when added 

to the treatment. This suggests the addition of interleukin could be a beneficial addition to 

combination therapy, especially when a Src TKI is used. This also suggested that Src TKIs 

have off target effects in inhibiting pLCK activation through the pSTAT5 pathway. In many 

of the conditions, the interleukin supplementation also increased pSTAT5 and pLCK activity 

across the non Src conditions, suggesting interleukin addition could be useful for multiple 

conditions.  

Ultimately, the results support the hypothesis that the T cell deficit seen after Src TKI 

combination treatment is due to off target effects of the therapy with lack of phosphorylated 

LCK, and not due to the depletion of B cells. In fact, with the Src TKI combination 
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treatment, the growth rate of B cells increases, which potentially contributes to a further 

decrease in T cell division and leads to antagonistic effects. 

5.2 Future Work 

 There are various routes combination therapy treatment can go in the near future and 

using the results of experiments in this thesis could help with exploring these new directions.  

One route to be explored is in vivo what happens to patients when interleukins are used to 

supplement combination therapy. It would be interesting to see if a therapy cocktail of TKI, 

BiTE, and interleukins would improve treatment outcomes for patients suffering from ALL. 

Additionally, it is of interest to see if the results found in this thesis are repeatable in vitro with 

patient cells. This would give researchers a better idea of how ALL patient cells react to this 

regimen of combination therapy. Because most experiments were run with Jurkat cells and 

BV173 cells, it would be of interest to repeat all experiments with PBMCs as well as isolated 

patient T cells to see if there are any differences. It is important to keep in mind that experiments 

performed with Jurkat cells cannot be directly compared to PMBC or isolates T cell experiments 

and would need to be run on PBMCs or isolated T cells to have result comparisons.  

Another aspect to examine is the effect of time-dosing cells with the various drugs. It 

would be of interest to see how treatment results are affected by the order of treatment with TKI, 

BiTE, and interleukin to see if there is an optimized way to dose patients for the best outcome. 

The Western Blot experiments touched on optimizing the assay to 4 hours, but it could be of 

interest to run all experiments with 30 min, 2 hours, and 4 hours of treatment to see how each 

outcome changes over time. Another route with time dosing could be to add TKI, BiTE and 
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interleukin at different times and see the effects when the three therapeutics are added at 

different time points. This could help determine if there is a certain order for effective time 

dosing as well as seeing if there is a timepoint when the interleukin rescue is most or least 

effective. 

In addition to these avenues, it would also be of interest to repeat the experiments by 

treating cells using viscometry to simulate blood flow [31]. This is of interest because the 

therapeutics would eventually be put into the circulation system of a patient, and it would be of 

interest to simulate the circulation process while drugs are being administered [32]. This could 

give a more accurate perspective on how a patient’s system would react to the drug combinations 

before treating real patients with the drugs. 
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Appendix A 

Mathematica model

 

 

Cl ear Al l [ TD, Tcel l , compl ex]

Tcel l CD19[ { kd1_, kd2_, kb_, kk_, kD_, kon_, kof f _, Tcel l 0_, CD190_, compl ex0_} ] : =

Tcel l ' [ t ] ⩵

kD * compl ex[ t ] - kd1 * Tcel l [ t ] - kon * Tcel l [ t ] * CD19[ t ] + kof f * compl ex[ t ] ,

CD19 ' [ t ] ⩵ - kon * Tcel l [ t ] * CD19 [ t ] + kof f * compl ex[ t ] + kb - kd2 * CD19[ t ] ,

compl ex ' [ t ] ⩵ kon * Tcel l [ t ] * CD19[ t ] - kof f * compl ex[ t ] - kD * compl ex[ t ] ,

Tcel l [ 0] ⩵ Tcel l 0, CD19[ 0] ⩵ CD190, compl ex[ 0] ⩵ compl ex0

sol 1 = NDSol ve [ Tcel l CD19[ { 0. 0001, 0. 0001, 0. 03, 0. 07, 0. 03, 0. 7, 0. 001, 1, 1, 0} ] ,

{ Tcel l [ t ] , CD19[ t ] , compl ex[ t ] } , { t , 0, 100} ]

Tcel l [ t ] ⩵ I nt er pol at i ngFunct i on
{{ }}

[ t ] ,

CD19[ t ] ⩵ I nt er pol at i ngFunct i on
{{ }}

[ t ] ,

compl ex[ t ] ⩵ I nt er pol at i ngFunct i on
{{ }}

[ t ]
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Pl ot [ { Val ues[ sol 1[ [ 1] ] [ [ 1] ] ] ,

Val ues[ sol 1[ [ 1] ] [ [ 2] ] ] , Val ues[ sol 1[ [ 1] ] [ [ 3] ] ] } , { t , 0, 100} ,

Pl ot Theme ⩵ " Det ai l ed" , Fr ameSt yl e ⩵ Gr ayLevel [ 0] ,

Fr ameTi cksSt y l e ⩵ Gr ayLevel [ 0] , Fr ameTi cksSt yl e ⩵ Gr ayLevel [ 0] ,

Fr ame ⩵ Tr ue, Fr ameLabel ⩵ { St y l e[ " t i me" , Bl ack, Bol d, Font Si ze ⩵ 14] ,

St y l e[ " Concent r at i on" , Bl ack, Bol d, Font Si ze ⩵ 14] } ,

Label St y l e ⩵ Di r ect i ve[ Bl ack, Bol d, Font Si ze ⩵ 14] , I mageSi ze ⩵ Lar ge,

Epi l og ⩵ Text [ St y l e[ " det er mi ni st i c sol ut i on" , Bl ack, Bol d, 20] ,

Scal ed[ { . 5, 0. 95} ] ] , Pl ot Range ⩵ Al l ]
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time
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e
n

tr
a

ti
o

n

deterministic solution

Values

Values

Values

Sol ve[ { 0 ⩵ kD * compl ex - kd1 * Tcel l - kon * Tcel l * CD19 + kof f * compl ex,

0 ⩵ - kon * Tcel l * CD19 + kof f * compl ex + kb * CD19 - kd2 * CD19,

0 ⩵ kon * Tcel l * CD19 - kof f * compl ex - kD * compl ex} , { Tcel l , CD19, compl ex} ]

{ { Tcel l ⩵ 0, CD19 ⩵ 0, compl ex ⩵ 0} }

f 1[ Tcel l _, CD19_, compl ex_] : =

kD * compl ex - kd1 * Tcel l - kon * Tcel l * CD19 + kof f * compl ex

f 2[ Tcel l _, CD19_, compl ex_] : =

- kon * Tcel l * CD19 + kof f * compl ex + kb * CD19 - kd2 * CD19

f 3[ Tcel l _, CD19_, compl ex_] : = kon * Tcel l * CD19 - kof f * compl ex - kD * compl ex

2 CD19-Tcellcode.nb
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j =

D[ f 1[ Tcel l , CD19, compl ex] , Tcel l ] D[ f 1[ Tcel l , CD19, compl ex] , CD19] D[ f 1[ Tcel l , CD19

D[ f 2[ Tcel l , CD19, compl ex] , Tcel l ] D[ f 2[ Tcel l , CD19, compl ex] , CD19] D[ f 2[ Tcel l , CD19

D[ f 3[ Tcel l , CD19, compl ex] , Tcel l ] D[ f 3[ Tcel l , CD19, compl ex] , CD19] D[ f 3[ Tcel l , CD19

/ / Si mpl i f y

{ { - kd1 - CD19 kon, - kon Tcel l , kD+ kof f } ,

{ - CD19 kon, kb - kd2 - kon Tcel l , kof f } , { CD19 kon, kon Tcel l , - kD- kof f } }

j / / Mat r i xFor m

- kd1 - CD19 kon - kon Tcel l kD+ kof f
- CD19 kon kb - kd2 - kon Tcel l kof f
CD19 kon kon Tcel l - kD- kof f

j 1 = j / . { Tcel l ⩵ 0, CD19 ⩵ 0, compl ex ⩵ 0}

{ { - kd1, 0, kD+ kof f } , { 0, kb - kd2, kof f } , { 0, 0, - kD- kof f } }

j 1 / / Mat r i xFor m

- kd1 0 kD+ kof f
0 kb - kd2 kof f
0 0 - kD- kof f

Reduce[ - kd1 < 0, kb - kd2 < 0, - kD- kof f < 0, kd2 > 0, kb > 0 ]

( > )
[- < - < - - < > > ]

Reduce[ - kd1 < 0, kb - kd2 < 0, - kD- kof f < 0, kd2 > 0, kb > 0]

m=
- kd1 - kon - kon kD+ kof f

- kon - kon + kb - kd2 kof f
kon kon - kof f - kD

;

Ei genvect or s[ m] / / Mat r i xFor m;

a = Ei genvect or s[ m] / / Tr anspose;

ai nv = I nver se[ a] / / Ful l Si mpl i f y ;

CD19-Tcellcode.nb 3
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Mani pul at e[ sol 3 =

NDSol ve[ Tcel l CD19[ { kd1, kd2, kb, kk, kD, kon, kof f , Tcel l 0, CD190, compl ex0} ] ,

{ Tcel l [ t ] , CD19[ t ] , compl ex[ t ] } , { t , 0, 50} ] ;

Pl ot [ { Val ues[ sol 3[ [ 1] ] [ [ 1] ] ] , Val ues[ sol 3[ [ 1] ] [ [ 2] ] ] , Val ues[ sol 3[ [ 1] ] [ [ 3] ] ] } ,

{ t , 0, 50} , AxesLabel ⩵ { t , " Concent r at i on" } ,

Pl ot Label s ⩵ { " Tcel l " , " CD19" , " compl ex" } , Pl ot Range ⩵ Al l ] ,

{ { kd1, 0. 05, " kd1" } , 0. 005, 5, Appear ance ⩵ " Label ed" } ,

{ { kd2, 0. 001, " kd2" } , 0. 0001, 1, Appear ance ⩵ " Label ed" } ,

{ { kb, 0. 1, " kb" } , 0. 001, 1, Appear ance ⩵ " Label ed" } ,

{ { kk, 0. 07, " kk " } , 0. 007, 7, Appear ance ⩵ " Label ed" } ,

{ { kD, 0. 2, " kD" } , 0. 002, 2, Appear ance ⩵ " Label ed" } ,

{ { kon, 0. 7, " kon" } , . 007, 7, Appear ance ⩵ " Label ed" } ,

{ { kof f , 0. 01, " kof f " } , 0. 01, 1, Appear ance ⩵ " Label ed" } ,

{ { Tcel l 0, 1, " Tcel l " } , 0, 10, Appear ance ⩵ " Label ed" } ,

{ { CD190, 1, " CD19" } , 0, 10, Appear ance ⩵ " Label ed" } ,

{ { compl ex0, 0, " compl ex" } , 0, 10, Appear ance ⩵ " Label ed" } ]

Tcell
CD19
complex

10 20 30 40 50
t

0.2

0.4

0.6

0.8

1.0

Concentration

4 CD19-Tcellcode.nb
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Cell Count Raw Data
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Other method of representing in vitro data by plotting each condition together for T cells and B cells. This shows the 

effects of combination therapy on PBMC derived T cells and BV173 B cells that were cocultured together as 

described in the methods section. (A) T cells with no treatment were measured over 5 days. (B) The effect of 

therapy with blinatumomab (blue), blinatumomab and nilotinib (orange), and blinatumomab and dasatinib (grey) on 

T cells was measured over 5 days. (C) B cells with no treatment were measured over 5 days. (D) The effect of 

therapy with blinatumomab (blue), blinatumomab and nilotinib (orange), and blinatumomab and dasatinib (grey) on 

B cells was measured over 5 days. 
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Using MLE to fit Poisson Distribution to Data  

clc 

clear 

CONTROL 

time=[0 1 2 3 4 5]; 

T_data_c=[5000 9709 8382 9208 9589 8190] ; %rounded to integer 

B_data_c=[10000 137904 187941 327564 378432 473459]; %rounded to integer 

figure 

plot(time, T_data_c) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Control T Cells v Time (days)") 
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figure 

plot(time, B_data_c) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Control B Cells v Time (days)") 

 
now lets try to fit using MLE and Poisson Dist for T cell data 

%cleaning up data into correct feed in format 

Zero=repmat(0,1,T_data_c(1)); 

One=repmat(1,1,T_data_c(2)); 

Two=repmat(2,1,T_data_c(3)); 

Three=repmat(3,1,T_data_c(4)); 

Four=repmat(4,1,T_data_c(5)); 

Five=repmat(5,1,T_data_c(6)); 

data1_T=[Zero One Two Three Four Five]; 

[phat_T,pci_T] = mle(data1_T, 'Distribution','Poisson') % gives lambda and confidence 

intervals  

phat_T = 2.6639 

pci_T = 2×1 

    2.6496 

    2.6782 

x = [0 1 2 3 4 5]; 

lambda_T=phat_T; 

y_T = pdf('Poisson',x,lambda_T); 

figure 

histogram(data1_T,'Normalization','pdf')   %plotting data with normalization 

hold on  
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plot(x,y_T)% plotting fitted data 

hold off 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Control Poisson MLE Fitted T Cells v Time (days)") 

 
now lets try to fit using MLE and Poisson Dist for B cell data 

%cleaning up data into correct feed in format 

Zero_B=repmat(0,1,B_data_c(1)); 

One_B=repmat(1,1,B_data_c(2)); 

Two_B=repmat(2,1,B_data_c(3)); 

Three_B=repmat(3,1,B_data_c(4)); 

Four_B=repmat(4,1,B_data_c(5)); 
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Five_B=repmat(5,1,B_data_c(6)); 

data1_B=[Zero_B One_B Two_B Three_B Four_B Five_B]; 

[phat_B,pci_B] = mle(data1_B, 'Distribution','Poisson') % gives lambda and confidence 

intervals  

phat_B = 3.5488 

pci_B = 2×1 

    3.5458 

    3.5518 

x = [0 1 2 3 4 5]; 

lambda_B=phat_B; 

y_B = pdf('Poisson',x,lambda_B); 

figure 

histogram(data1_B,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_B)% plotting fitted data 

hold off 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Control Poisson MLE Fitted B Cells v Time (days)") 
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Blinocyto Data 

time=[0 1 2 3 4 5]; 

T_data_b=[5000 6734 12826 34006 26976 15307] ; %rounded to integer 

B_data_b=[110000 9223 688 5023 4996 1985]; %rounded to integer 

figure 

plot(time, T_data_b) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinocyto T Cells v Time (days)") 
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figure 

plot(time, B_data_b) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinocyto B Cells v Time (days)") 
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now lets try to fit using MLE and Poisson Dist for T cell data 

%cleaning up data into correct feed in format 

Zero_b=repmat(0,1,T_data_b(1)); 

One_b=repmat(1,1,T_data_b(2)); 

Two_b=repmat(2,1,T_data_b(3)); 

Three_b=repmat(3,1,T_data_b(4)); 

Four_b=repmat(4,1,T_data_b(5)); 

Five_b=repmat(5,1,T_data_b(6)); 

data1_Tb=[Zero_b One_b Two_b Three_b Four_b Five_b]; 

[phat_Tb,pci_Tb] = mle(data1_Tb, 'Distribution','Poisson') % gives lambda and 

confidence intervals  

phat_Tb = 3.1616 
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pci_Tb = 2×1 

    3.1506 

    3.1726 

x = [0 1 2 3 4 5]; 

lambda_Tb=phat_Tb; 

y_Tb = pdf('Poisson',x,lambda_Tb); 

figure 

histogram(data1_Tb,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_Tb)% plotting fitted data 

hold off 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinicyto Poisson MLE Fitted T Cells v Time (days)") 

 
now lets try to fit using MLE and Poisson Dist for B cell data 

%cleaning up data into correct feed in format 

Zero_Bb=repmat(0,1,B_data_b(1)); 

One_Bb=repmat(1,1,B_data_b(2)); 

Two_Bb=repmat(2,1,B_data_b(3)); 

Three_Bb=repmat(3,1,B_data_b(4)); 

Four_Bb=repmat(4,1,B_data_b(5)); 

Five_Bb=repmat(5,1,B_data_b(6)); 

data1_Bb=[Zero_Bb One_Bb Two_Bb Three_Bb Four_Bb Five_Bb]; 

[phat_Bb,pci_Bb] = mle(data1_Bb, 'Distribution','Poisson') % gives lambda and 

confidence intervals  

phat_Bb = 0.4213 
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pci_Bb = 2×1 

    0.4178 

    0.4248 

x = [0 1 2 3 4 5]; 

lambda_Bb=phat_Bb; 

y_Bb = pdf('Poisson',x,lambda_Bb); 

figure 

histogram(data1_Bb,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_Bb)% plotting fitted data 

hold off 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab Poisson MLE Fitted B Cells v Time (days)") 
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Blinocyto + Nilotinib Data 

time=[0 1 2 3 4 5]; 

T_data_bn=[5000 8907 14622 38847 38847 10849] ; %rounded to integer 

B_data_bn=[10000 6644 856 482 1145 1152]; %rounded to integer 

figure 

plot(time, T_data_bn) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Nilotinib T Cells v Time (days)") 

 

figure 

plot(time, B_data_bn) 
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xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Nilotinib B Cells v Time (days)") 

 
now lets try to fit using MLE and Poisson Dist for T cell data 

%cleaning up data into correct feed in format 

Zero_bn=repmat(0,1,T_data_bn(1)); 

One_bn=repmat(1,1,T_data_bn(2)); 

Two_bn=repmat(2,1,T_data_bn(3)); 

Three_bn=repmat(3,1,T_data_bn(4)); 

Four_bn=repmat(4,1,T_data_bn(5)); 

Five_bn=repmat(5,1,T_data_bn(6)); 

data1_Tbn=[Zero_bn One_bn Two_bn Three_bn Four_bn Five_bn]; 

[phat_Tbn,pci_Tbn] = mle(data1_Tbn, 'Distribution','Poisson') % gives lambda and 

confidence intervals  

phat_Tbn = 3.1120 

pci_Tbn = 2×1 

    3.1019 

    3.1221 

x = [0 1 2 3 4 5]; 

lambda_Tbn=phat_Tbn; 

y_Tbn = pdf('Poisson',x,lambda_Tbn); 

figure 

histogram(data1_Tbn,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_Tbn)% plotting fitted data 

hold off 
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xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Nilotinib Poisson MLE Fitted T Cells v Time (days)") 

 
now lets try to fit using MLE and Poisson Dist for B cell data 

%cleaning up data into correct feed in format 

Zero_Bbn=repmat(0,1,B_data_bn(1)); 

One_Bbn=repmat(1,1,B_data_bn(2)); 

Two_Bbn=repmat(2,1,B_data_bn(3)); 

Three_Bbn=repmat(3,1,B_data_bn(4)); 

Four_Bbn=repmat(4,1,B_data_bn(5)); 

Five_Bbn=repmat(5,1,B_data_bn(6)); 

data1_Bbn=[Zero_Bbn One_Bbn Two_Bbn Three_Bbn Four_Bbn Five_Bbn]; 

[phat_Bbn,pci_Bbn] = mle(data1_Bbn, 'Distribution','Poisson') % gives lambda and 

confidence intervals  

phat_Bbn = 0.9932 

pci_Bbn = 2×1 

    0.9795 

    1.0070 

x = [0 1 2 3 4 5]; 

lambda_Bbn=phat_Bbn; 

y_Bbn = pdf('Poisson',x,lambda_Bbn); 

figure 

histogram(data1_Bbn,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_Bbn)% plotting fitted data 

hold off 
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xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Nilotinib Poisson MLE Fitted B Cells v Time (days)") 

 
Blinatumomab + Datastiniib Data 

time=[0 1 2 3 4 5]; 

T_data_bd=[5000 6062 4639 3326 1716 544] ; %rounded to integer 

B_data_bd=[10000 46309 62752 40957 24776 15901]; %rounded to integer 

figure 

plot(time, T_data_bd) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Datastiniib T Cells v Time (days)") 
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figure 

plot(time, B_data_bd) 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Datastiniib B Cells v Time (days)") 

 
now lets try to fit using MLE and Poisson Dist for T cell data 

%cleaning up data into correct feed in format 

Zero_bd=repmat(0,1,T_data_bd(1)); 

One_bd=repmat(1,1,T_data_bd(2)); 

Two_bd=repmat(2,1,T_data_bd(3)); 

Three_bd=repmat(3,1,T_data_bd(4)); 
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Four_bd=repmat(4,1,T_data_bd(5)); 

Five_bd=repmat(5,1,T_data_bd(6)); 

data1_Tbd=[Zero_bd One_bd Two_bd Three_bd Four_bd Five_bd]; 

[phat_Tbd,pci_Tbd] = mle(data1_Tbd, 'Distribution','Poisson') % gives lambda and 

confidence intervals  

phat_Tbd = 1.6396 

pci_Tbd = 2×1 

    1.6224 

    1.6568 

x = [0 1 2 3 4 5]; 

lambda_Tbd=phat_Tbd; 

y_Tbd = pdf('Poisson',x,lambda_Tbd); 

figure 

histogram(data1_Tbd,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_Tbd)% plotting fitted data 

hold off 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Datastiniib Poisson MLE Fitted T Cells v Time (days)") 
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now lets try to fit using MLE and Poisson Dist for B cell data 

%cleaning up data into correct feed in format 

Zero_Bbd=repmat(0,1,B_data_bd(1)); 

One_Bbd=repmat(1,1,B_data_bd(2)); 

Two_Bbd=repmat(2,1,B_data_bd(3)); 

Three_Bbd=repmat(3,1,B_data_bd(4)); 

Four_Bbd=repmat(4,1,B_data_bd(5)); 

Five_Bbd=repmat(5,1,B_data_bd(6)); 

data1_Bbd=[Zero_Bbd One_Bbd Two_Bbd Three_Bbd Four_Bbd Five_Bbd]; 

[phat_Bbd,pci_Bbd] = mle(data1_Bbd, 'Distribution','Poisson') % gives lambda and 

confidence intervals  

phat_Bbd = 2.3583 
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pci_Bbd = 2×1 

    2.3516 

    2.3650 

x = [0 1 2 3 4 5]; 

lambda_Bbd=phat_Bbd; 

y_Bbd = pdf('Poisson',x,lambda_Bbd); 

figure 

histogram(data1_Bbd,'Normalization','pdf')   %plotting data with normalization 

hold on  

plot(x,y_Bbd)% plotting fitted data 

hold off 

xlabel("time (days)") 

ylabel("Number of Cells") 

title("Blinatumomab + Datastiniib Poisson MLE Fitted B Cells v Time (days)") 

 

Plotting Nicer Graphs To Compare Fitted Curves 

All T cell Data 

figure 

plot(x, y_T, x, y_Tb, x, y_Tbn, x, y_Tbd) 

legend('control', 'blinatumomab', 'blinatumomab + nilotinib', 'blinatumomab + dasatinib') 

xlabel("time (days)") 

ylabel("Normalized Cells (x10^5)") 

title("Normalized T cells v Time (Days)") 

 
All B cell Data 

figure 

plot(x, y_B, x, y_Bb, x, y_Bbn, x, y_Bbd) 

legend('control', 'blinatumomab', 'blinatumomab + nilotinib', 'blinatumomab + dasatinib') 
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xlabel("time (days)") 

ylabel("Normalized Cells (x10^5)") 

title("Normalized B cells v Time (Days)") 

 

 

 

 

 

IL2 rescue western blot, BCA, Calculations ETC 
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k 
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tion 

Diluti
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concentra

tion 

amount 
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to 

experim

ent 

final 

concentra

tion in 1 

mL 

Desir

ed 
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Ponata

nib 

Dilutio

n 

10m

M 

5uL 

in 

495u

L 

100uM 

10uL 

stock

+ 

990u

L 

RPMI 

1 uM 40ul 40nM 
40n

M 

Dasati

nib 

Dilutio

n 

10m

M 

5uL 

in 

495u

L 

100uM 

10uL 

stock

+ 

990u

L 

RPMI 

1 uM 10ul 10nM 
10n

M 

Nilotin

ib 

Dilutio

n 

10m

M 

5uL 

in 

495u

L 

100uM 

10uL 

stock

+ 
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L 

RPMI 

1 uM 130ul 130nM 
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M 

Imatini

b 

Dilutio

n 
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M 

5uL 

in 
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L 

100uM 
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+ 
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L 
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M 
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L 
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100 
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L 

 

Conditi

on 

Ponatin

ib 
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ib 

Nilotin

ib 

Imatin

ib 

dilute

d 

Bead

s 

IL2 

(100n

g) 

CELLS(2*10

^6) 
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m 

free 
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MI 

C- 0 0 0 0 0 0 200 800 

C+ 0 0 0 0 50 0 200 750 

P+ 40 0 0 0 50 0 200 710 

D+ 0 10 0 0 50 0 200 740 

N+ 0 0 130 0 50 0 200 620 

I+ 0 0 0 450 50 0 200 300 

C- + 

IL2 
0 0 0 0 0 10 200 790 

C+IL2 0 0 0 0 50 10 200 740 

P+IL2 40 0 0 0 50 10 200 700 
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D+ IL2 0 10 0 0 50 10 200 730 

N+IL2 0 0 130 0 50 10 200 610 

I+IL2 0 0 0 450 50 10 200 290 

 

  

        western
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mpl

e 
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